An adaptive ant colony algorithm is proposed to overcome the premature convergence problem in the conventional ant colony algorithm. The adaptive ant colony is composed of three groups of ants: ordinary ants, abnormal ants and random ants. Each ordinary ant searches the path with the high concentration pheromone at the high probability, each abnormal ant searches the path with the high concentration pheromone at the low probability, and each random ant randomly searches the path regardless of the pheromone concentration. Three groups of ants provide a good initial state of pheromone trails together. As the optimization calculation goes on, the number of the abnormal ants and the random ants decreases gradually. In the late optimization stage, all of ants transform to the ordinary ants, which can rapidly concentrate to the optimal paths. Simulation results show that the algorithm has a good optimization performance, and can resolve traveling salesman problem effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.