The single-pass multi-layer depositing strategy is usually used to fabricate thin-wall structures with wire and arc additive manufacturing (WAAM) technology. Various deposited wall thicknesses often lead to a change in arc shrinkage in the wall thickness direction, which affects the arc shape and stability, and even the microstructure and properties. To systematically study the effect of wall thickness (δ) on arc shape and stability, 3D numerical models were established, with wall thickness varying from 1 to 14 mm during the WAAM process. The characteristics of the arc shape, temperature field, velocity field, current density, and the electromagnetic force were investigated. When δ is smaller than the arc diameter (Φ), the thinner wall will result in a longer arc along the deposition direction. When δ is greater than the Φ, the arc shape tends to be a bell shape. When δ < Φ, the peak temperature in the arc centre, the peak current density, and the electromagnetic intensity along the welding direction decreased with the increase in the wall thickness. However, the opposite observations were found when δ < Φ. The simulation results are consistent with the actual arc shape collected and showed that when δ is slightly less than Φ, the forming quality of the deposited wall is the best. The research in this paper can fill the research gap and provide a theoretical basis for the matching selection of process parameters and wall thickness in WAAM applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.