The surface quality of the polishing tool is of great importance to the polishing performance, and it is usually maintained by a dressing process. The dressing parameters, which ultimately influence the effectiveness of dressing, are difficult to determine because the dressing process involves complex multiaxis motion control. To improve the machining efficiency and quality of the polishing tool, this study investigated the optimization of the process parameters. First, the grain on the grinding wheel was regarded as the research object. The trajectory model of the grain was established using multi-body theory. Subsequently, based on the above model, an optimization method was developed to optimize the process parameters. The experimental results showed that the average initial contour error of the surface of the polishing tools was 267.46 µm. When polishing tools were dressed using the worst process parameters, the surface quality was improved by an average of 67.82% to 86.06 µm. When polishing tools were dressed using the best process parameters, the surface quality of the polishing tools improved by 86.57% to 35.92 µm on average. This paper demonstrated the accuracy of the model and effectiveness of the proposed optimization method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.