The mannose binding proteins on the surface of the dendritic cells are responsible for capture of pathogens in the early stages of immune response. Conjugation to mannose dendrimers is a rarely explored but potentially powerful strategy for enhancing immunogenicity of synthetic peptides relying on direct delivery to dendritic cells. We describe a general protocol for preparation of pure, monodisperse third-generation mannosylated poly-L-lysine dendrimer-peptide conjugates using direct, machine-assisted Fmoc/t-Bu solid phase peptide synthesis. The glycodendrons were elaborated onto the N- or C-terminus of sequences derived from HIV-1 gp41, SARS-CoV S2 protein, and Influenza Hemagglutinin (consisting of 15-44 residues). The products were obtained in a homogeneous state after cleavage from the resin, deprotection, and a single purification on semipreparative RP-HPLC.
To execute the membrane fusion function, it is necessary for the fusion protein of the virus to penetrate into the hydrophobic milieu of membrane bilayer. Hence identification of the region(s) of the ectodomain of viral fusion proteins involved in the membrane insertion and their interaction with the rest of the fusion protein in the membrane would be important for the mechanistic study of membrane fusion. To this end, we examined membrane activity of the fusion peptide, and the ectodomain protein with or without the fusion peptide domain of HIV-1 gp41 by several biophysical measurements. The results revealed that the ectodomain protein containing the fusion peptide domain had higher membrane-perturbing activity and deeper membrane insertion, while the construct lacking the fusion peptide domain had much lower membrane activity. Strikingly, the N-terminal heptad repeat region was found to be induced deeper into the membrane by the fusion peptide, consistent with the role of the latter in the membrane penetration. We concluded that the fusion peptide is the only stretch of gp41 ectodomain that embeds deeply in the membrane interior in the prefusion stage. The function of fusion peptide in terms of membrane interaction and the implications of its interplay with other domains of gp41 on the membrane fusion cascade were discussed.
The issue of electronic heat dissipation has received much attention in recent times and has become one of the key factors in electronic components such as circuit boards. Therefore, designing of materials with good thermal conductivity is vital. In this work, a thermally conductive SBP/PU composite was prepared wherein the spherical h-BN@PMMA (SBP) composite powders were dispersed in the polyurethane (PU) matrix. The thermal conductivity of SBP was found to be significantly higher than that of the pure h-BN/PU composite at the same h-BN filler loading. The SBP/PU composite can reach a high thermal conductivity of 7.3 Wm−1 K−1 which is twice as high as that of pure h-BN/PU composite without surface treatment in the same condition. This enhancement in the property can be attributed to the uniform dispersion of SBP in the PU polymer matrix that leads to a three-dimensional continuous heat conduction thereby improving the heat diffusion of the entire composite. Hence, we provide a valuable method for preparing a 3-dimensional heat flow path in polyurethane composite, leading to a high thermal conductivity with a small amount of filler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.