BackgroundMicroarray data are usually peppered with missing values due to various reasons. However, most of the downstream analyses for microarray data require complete datasets. Therefore, accurate algorithms for missing value estimation are needed for improving the performance of microarray data analyses. Although many algorithms have been developed, there are many debates on the selection of the optimal algorithm. The studies about the performance comparison of different algorithms are still incomprehensive, especially in the number of benchmark datasets used, the number of algorithms compared, the rounds of simulation conducted, and the performance measures used.ResultsIn this paper, we performed a comprehensive comparison by using (I) thirteen datasets, (II) nine algorithms, (III) 110 independent runs of simulation, and (IV) three types of measures to evaluate the performance of each imputation algorithm fairly. First, the effects of different types of microarray datasets on the performance of each imputation algorithm were evaluated. Second, we discussed whether the datasets from different species have different impact on the performance of different algorithms. To assess the performance of each algorithm fairly, all evaluations were performed using three types of measures. Our results indicate that the performance of an imputation algorithm mainly depends on the type of a dataset but not on the species where the samples come from. In addition to the statistical measure, two other measures with biological meanings are useful to reflect the impact of missing value imputation on the downstream data analyses. Our study suggests that local-least-squares-based methods are good choices to handle missing values for most of the microarray datasets.ConclusionsIn this work, we carried out a comprehensive comparison of the algorithms for microarray missing value imputation. Based on such a comprehensive comparison, researchers could choose the optimal algorithm for their datasets easily. Moreover, new imputation algorithms could be compared with the existing algorithms using this comparison strategy as a standard protocol. In addition, to assist researchers in dealing with missing values easily, we built a web-based and easy-to-use imputation tool, MissVIA (http://cosbi.ee.ncku.edu.tw/MissVIA), which supports many imputation algorithms. Once users upload a real microarray dataset and choose the imputation algorithms, MissVIA will determine the optimal algorithm for the users' data through a series of simulations, and then the imputed results can be downloaded for the downstream data analyses.
Regulatory targets of transcription factors (TFs) can be identified by the TF perturbation experiments, which reveal the expression changes owing to the perturbation (deletion or overexpression) of TFs. But the identified targets of a given TF consist of both direct and indirect regulatory targets. It has been shown that most of the TFPE-identified regulatory targets are indirect, indicating that TF-gene regulation is mainly through transcriptional regulatory pathways (TRPs) consisting of intermediate TFs. Without identification of these TRPs, it is not easy to understand how a TF regulates its indirect targets. Because there is no such database depositing the potential TRPs for Saccharomyces cerevisiae now, this motivates us to construct the YTRP (Yeast Transcriptional Regulatory Pathway) database. For each TF-gene regulatory pair under different experimental conditions, all possible TRPs in two underlying networks (constructed using experimentally verified TF-gene binding pairs and TF-gene regulatory pairs from the literature) for the specified experimental conditions were automatically enumerated by TRP mining procedures developed from the graph theory. The enumerated TRPs of a TF-gene regulatory pair provide experimentally testable hypotheses for the molecular mechanisms behind a TF and its regulatory target. YTRP is available online at http://cosbi3.ee.ncku.edu.tw/YTRP/. We believe that the TRPs deposited in this database will greatly improve the usefulness of TFPE data for yeast biologists to study the regulatory mechanisms between a TF and its knocked-out targets.Database URL: http://cosbi3.ee.ncku.edu.tw/YTRP/
Disability became increasingly common with age, and crude rates of disability were rising around the globe. The aim of this study was to investigate the association between calf circumference (CC) and disability in the U.S. elderly population. From the 1999–2006 National Health and Nutrition Examination Survey, a total of 4,245 participants with an age range of 60–84 years were included. Disability was defined as the total number of difficulties within the following 5 major domains of disability, such as activities of daily living (ADL), instrumental ADL, general physical activities, lower extremity mobility, and leisure and social activities. The association between CC and disability was investigated through the regression model adjusted for multiple covariates. According to the fully adjusted model regarding disability, the β coefficients for each quartile of increasing CC were −0.041 for quartile 2 (P = 0.096), −0.060 for quartile 3 (P = 0.027), and −0.073 for quartile 4 (P = 0.026) respectively, compared with lowest quartile. There was a negative association between CC and disability among the elderly population. Calf circumference may be a novel risk assessment for disability of elderly people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.