The glucose concentration in human blood can have a worrisome impact on human health, so the distribution of blood glucose contaminants in the human body is an important indicator that can be used to monitor diabetes. Diabetes affects many parts of the human body, such as neurological impairment, erectile dysfunction, and hardening of the arteries resulting in organ loss. In this study, cyclic voltammetry (CV) was used to process the electrical properties of a solution by preparing electrodes with CuO nanoparticles modified ZnO tetrapod nanostructures deposited on fluorine-doped tin oxide glass (CuO/ZnO/FTO). The measurements were processed in glucose solutions of different concentrations purposing for developing the sensitivity of the sensor. Different immersion times in the precursor copper sulfate solution were also used for preparing the electrode and carried out for electrochemical studies to adjust the electrode capability. The modified electrode, which was immersed in copper sulfate for 30 s, was efficient in detecting glucose molecules in different concentrations at the potential of +0.6 V. The rising slope is strongly and positively correlated with the concentration of glucose. One of the significant results is the indication that glucose concentration is linearly proportional to the current value of CV. After the measurement test with the addition of interference, the sensor can still identify the glucose concentration in the solution without being affected. This result proves that the sensor has considerable potential for developing into a high-performance non-enzymatic glucose sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.