Highlights d Projection termini of female Pvl neurons in AVPV increase during estrus d Estrogen triggers the increase of Pvl projection termini in AVPV d This structural plasticity increases functional connectivity between Pvl and AVPV
Proteins encoded by genes in the MHC are highly polymorphic. For class II proteins the highest level of polymorphism is found in distinct regions of variability, notably in the membrane-distal domains. To investigate the role of such residues in antigen presentation, we have tested cells transfected with wild-type or mutant I-Ak beta chains for their ability to present the NH2-terminal peptide of myelin basic protein to a panel of T cell clones. We were unable to detect a gross effect on peptide binding, in that all of the mutant cell lines presented antigen to at least one of the cloned T cells. However, the results imply that the more NH2-terminal residues, particularly 12 and 14, are involved in peptide interactions. Mutations at these residues presented antigen only at high antigen concentrations. Furthermore, residues of the more COOH-terminal regions appear to determine TCR interactions. Mutations in the predicted alpha-helical regions of the beta chain affected antigen presentation without abolishing peptide binding.
We previously described a process referred to as transmitophagy where mitochondria shed by retinal ganglion cell (RGC) axons are transferred to and degraded by surrounding astrocytes in the optic nerve head of mice. Since the mitophagy receptor Optineurin (OPTN) is one of few large- effect glaucoma genes and axonal damage occurs at the optic nerve head in glaucoma, here we explored whether OPTN mutations perturb transmitophagy. Live-imaging ofXenopus laevisoptic nerves revealed that diverse human mutant but not wildtype OPTN increase stationary mitochondria and mitophagy machinery and their colocalization within, and in the case of the glaucoma-associated OPTN mutations also outside of, RGC axons. These extra-axonal mitochondria are degraded by astrocytes. Our studies support the view that in RGC axons under baseline conditions there are low levels of mitophagy, but that glaucoma-associated perturbations in OPTN result in increased axonal mitophagy involving the shedding and astrocytic degradation of the mitochondria.Graphical Abstract
The effect of polymorphic residues on the A alpha A beta molecule on T cell recognition of the N-terminal nonapeptide of myelin basic protein (R1-9) was determined. Ak-restricted T cell clones recognizing R1-9 were isolated. The peptide-Ia specificities of these clones were determined by testing the response to 1) a panel of peptide analogs of R1-11, 2) splenic APC from mice expressing MHC molecules from serologically distinct haplotypes, and 3) L cell transfectants expressing mutant/recombinant A beta cDNA containing combinations of polymorphic nucleotide sequences from the k and u alleles. Comparisons were made between the Ak-restricted clones and a previously characterized panel of Au-restricted clones. Certain Ak-restricted clones were able to recognize MBP peptide analogs that were not recognized by any of the Au-restricted clones. The Au-restricted T cell clones did not cross-react with R1-9 presented in the context of Ak, whereas the majority of the Ak-restricted clones responded to R1-9 presented in the context of Au. This nonreciprocal cross-reactivity was also reflected in the relative responses of the two sets of T cell clones to the interchange of u- and k-derived residues in the A beta chain. Residues in regions corresponding both the alpha-helical or beta-sheet portions of the hypothetical Ia three-dimensional structure were involved. The results suggest that overall specificity of the T cell clones is the summation of numerous distinct subspecificities for different regions of the peptide-Ia ligand. These results indicate that there can be striking differences in T cell specificity for an autoantigenic epitope, even in the context of A alpha A beta molecules from very closely related haplotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.