Nineteen teams presented results for the Gene Mention Task at the BioCreative II Workshop. In this task participants designed systems to identify substrings in sentences corresponding to gene name mentions. A variety of different methods were used and the results varied with a highest achieved F1 score of 0.8721. Here we present brief descriptions of all the methods used and a statistical analysis of the results. We also demonstrate that, by combining the results from all submissions, an F score of 0.9066 is feasible, and furthermore that the best result makes use of the lowest scoring submissions.
Mesoporous oxides attract a great deal of interest in many fields, including energy, catalysis and separation, because of their tunable structural properties such as surface area, pore volume and size, and nanocrystalline walls. Here we report thermally stable, crystalline, thermally controlled monomodal pore size mesoporous materials. Generation of such materials involves the use of inverse micelles, elimination of solvent effects, minimizing the effect of water content and controlling the condensation of inorganic frameworks by NO x decomposition. Nanosize particles are formed in inverse micelles and are randomly packed to a mesoporous structure. The mesopores are created by interconnected intraparticle voids and can be tuned from 1.2 to 25 nm by controlling the nanoparticle size. Such phenomena allow the preparation of multiple phases of the same metal oxide and syntheses of materials having compositions throughout much of the periodic table, with different structures and thermal stabilities as high as 800°C.
Electrografted films of amine-functionalized thiophenes significantly improve coating adhesion and maintain charge transport.
The high photocatalytic activity of mixed phase (80% anatase and 20% rutile) titanium dioxide (Degussa P25) has attracted a great deal of interest in recent years. However, its low efficiency in visible light and nonporous nature limits the potential use and capabilities. Here, we report a novel preparation method for crystalline, thermally stable (up to 800 °C) TiO2 materials with tunable anatase/rutile phase compositions (0–100%) and monomodal mesoporosity. The control of the phase compositions was achieved by framework vanadium doping and various applied heat treatments. Vanadium (0% to 10% doping) decreased the anatase–rutile transformation temperature (from 1000 to 600 °C) and shifted the absorption band to the visible light region (narrowed the band gap). The mesopore structure was preserved in mixed phase TiO2. These materials are members of the recently discovered University of Connecticut (UCT) mesoporous materials family. The UCT materials are randomly packed nanoparticle aggregates and mesopores that are formed by connected intraparticle voids. The synthesis of UCT materials relies on controlling the sol–gel chemistry of inorganic sols in inverse surfactant micelles and NOx (nitric oxides) chemistry. The visible light (>400 nm) photocatalytic activity of mixed phase mesoporous titania samples was studied. The highest photocatalytic activity was obtained by mesoporous titania with 61% anatase and 39% rutile composition. The catalyst can totally remove (100% conversion) methylene blue dye (MB) under visible light irradiation in 2 h, whereas commercial P25 was only able to remove 28% under the same reaction conditions. The mixed phase mesoporous material also shows high photocatalytic activity for degrading phenol and 4-chlorophenol under visible light irradiation. Moreover, the good crystallinity, high surface area (94 m2/g), and monomodal mesoporosity (around 5 nm) can be preserved even after three cycles of photocatalytic reactions.
Inspired by the natural oxygen evolution reaction of Photosystem II, the earth-abundant and inexpensive manganese oxides (MnO x ) have been recognized for their great potential as highly efficient and robust materials for water oxidation reaction (WORs). To date, most of the heterogeneous, synthesized MnO x catalysts still exhibit lower activities for WORs, in comparison to RuO 2 and IrO 2 . Herein, we report a single-step and scalable synthesis method for mesoporous MnO x materials that is developed through a soft-templated method. This method allowed precise control of Mn 3+ -rich Mn 2 O 3 structure as well as pore sizes and crystallinity of these mesoporous MnO x . These catalysts were investigated for both photochemical and electrochemical water oxidation, and they presented a superior activity for water oxidation. The highest turnover frequency of 1.05 × 10 −3 s −1 was obtained, which is comparable with those for precious metal oxide based catalysts (RuO 2 and IrO 2 ). Our results illustrate a guideline to the design and synthesis of inexpensive and highly active heterogeneous catalysts for water oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.