Thrombin-induced endothelial monolayer hyperpermeability is thought to result from increased F-actin stress fiber-related contractile tension, a process regulated by the small GTP-binding protein Rho. We tested whether this process was dependent on the Rho-associated protein kinase, ROCK, using a specific ROCK inhibitor, Y-27632. The effects of Y-27632 on thrombin-induced myosin light chain phosphorylation (MLCP) and tyrosine phosphorylation of p125 focal adhesion kinase (p125(FAK)) and paxillin were measured by Western blotting. F-actin organization and content were analyzed by digital imaging, and endothelial monolayer permeability was measured in bovine pulmonary artery endothelial cell (EC) monolayers using a size-selective permeability assay. Y-27632 enhanced EC monolayer barrier function due to a decline in small-pore number that was associated with increased EC surface area, reduced F-actin content, and reorganization of F-actin to beta-catenin-containing cell-cell adherens junctions. Although Y-27632 prevented thrombin-induced MLCP, stress fiber formation, and the increased phosphotyrosine content of paxillin and p125(FAK), it attenuated but did not prevent the thrombin-induced formation of large paracellular holes. These data indicate that thrombin-induced stress fiber formation is ROCK dependent. In contrast, thrombin-induced paracellular hole formation occurs in a ROCK-independent manner, whereas thrombin-induced monolayer hyperpermeability appears to be partially ROCK dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.