E-cadherin function was disrupted in vivo in developing Xenopus laevis embryos through the expression of a mutant E-cadherin protein lacking its cytoplasmic tail. This truncated form of E-cadherin was designed to act as a dominant negative mutant by competing with the extracellular interactions of wild-type endogenous E-cadherin. Expression of truncated E-cadherin in the early embryo causes lesions to develop in the ectoderm during gastrulation. In contrast, expression of a similarly truncated N-cadherin protein failed to cause the lesions. The ectodermal defect caused by the truncated E-cadherin is rescued by overexpression of wild-type E-cadherin, by co-injection of full-length E-cadherin RNA along with the RNA for the truncated form. Overexpression of full-length C-cadherin, however, is unable to compensate for the disruption of E-cadherin function and can actually cause similar ectodermal lesions when injected alone, suggesting that there is a specific requirement for E-cadherin. Therefore, E-cadherin seems to be specifically required for maintaining the integrity of the ectoderm during epiboly in the gastrulating Xenopus embryo. Differential cadherin expression reflects, therefore, the requirement for distinct adhesive properties during different morphogenetic cell behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.