Several sequence and structural factors have been proposed to contribute toward greater stability of thermophilic proteins. Here we present a statistical examination of structural and sequence parameters in representatives of 18 non-redundant families of thermophilic and mesophilic proteins. Our aim was to look for systematic differences among thermophilic and mesophilic proteins across the families. We observe that both thermophilic and mesophilic proteins have similar hydrophobicities, compactness, oligomeric states, polar and non-polar contribution to surface areas, main-chain and side-chain hydrogen bonds. Insertions/deletions and proline substitutions do not show consistent trends between the thermophilic and mesophilic members of the families. On the other hand, salt bridges and side chain-side chain hydrogen bonds increase in the majority of the thermophilic proteins. Additionally, comparisons of the sequences of the thermophile-mesophile homologous protein pairs indicate that Arg and Tyr are significantly more frequent, while Cys and Ser are less frequent in thermophilic proteins. Thermophiles both have a larger fraction of their residues in the alpha-helical conformation, and they avoid Pro in their alpha-helices to a greater extent than the mesophiles. These results indicate that thermostable proteins adapt dual strategies to withstand high temperatures. Our intention has been to explore factors contributing to the stability of proteins from thermophiles with respect to the melting temperatures (T(m)), the best descriptor of thermal stability. Unfortunately, T(m) values are available only for a few proteins in our high resolution dataset. Currently, this limits our ability to examine correlations in a meaningful way.
Folding funnels have been the focus of considerable attention during the last few years. These have mostly been discussed in the general context of the theory of protein folding. Here we extend the utility of the concept of folding funnels, relating them to biological mechanisms and function. In particular, here we describe the shape of the funnels in light of protein synthesis and folding; flexibility, conformational diversity, and binding mechanisms; and the associated binding funnels, illustrating the multiple routes and the range of complexed conformers. Specifically, the walls of the folding funnels, their crevices, and bumps are related to the complexity of protein folding, and hence to sequential vs. nonsequential folding. Whereas the former is more frequently observed in eukaryotic proteins, where the rate of protein synthesis is slower, the latter is more frequent in prokaryotes, with faster translation rates. The bottoms of the funnels reflect the extent of the flexibility of the proteins. Rugged floors imply a range of conformational isomers, which may be close on the energy landscape. Rather than undergoing an induced fit binding mechanism, the conformational ensembles around the rugged bottoms argue that the conformers, which are most complementary to the ligand, will bind to it with the equilibrium shifting in their favor. Furthermore, depending on the extent of the ruggedness, or of the smoothness with only a few minima, we may infer nonspecific, broad range vs. specific binding. In particular, folding and binding are similar processes, with similar underlying principles. Hence, the shape of the folding funnel of the monomer enables making reasonable guesses regarding the shape of the corresponding binding funnel. Proteins having a broad range of binding, such as proteolytic enzymes or relatively nonspecific endonucleases, may be expected to have not only rugged floors in their folding funnels, but their binding funnels will also behave similarly, with a range of complexed conformations. Hence, knowledge of the shape of the folding funnels is biologically very useful. The converse also holds: If kinetic and thermodynamic data are available, hints regarding the role of the protein and its binding selectivity may be obtained. Thus, the utility of the concept of the funnel carries over to the origin of the protein and to its function.
The long-held views on lock-and-key versus induced fit in binding arose from the notion that a protein exists in a single, most stable conformation, dictated by its sequence. However, in solution proteins exist in a range of conformations, which may be described by statistical mechanical laws and their populations follow statistical distributions. Upon binding, the equilibrium will shift in favor of the bound conformation from the ensemble of conformations around the bottom of the folding funnel. Hence here we extend the implications and the usefulness of the folding funnel concept to explain fundamental binding mechanisms.
Allostery is largely associated with conformational and functional transitions in individual proteins. This concept can be extended to consider the impact of conformational perturbations on cellular function and disease states. Here, we clarify the concept of allostery and how it controls physiological activities. We focus on the challenging questions of how allostery can both cause disease and contribute to development of new therapeutics. We aim to increase the awareness of the linkage between disease symptoms on the cellular level and specific aberrant allosteric actions on the molecular level and to emphasize the potential of allosteric drugs in innovative therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.