Immunotherapy and chemotherapy are generally effective against small tumors in animal models of cancer. However, these treatment regimens are generally ineffective against large, bulky tumors. We have found that a multimodality treatment regimen using DNA vaccination in combination with chemotherapeutic agent epigallocatechin-3-gallate (EGCG), a compound found in green tea, is effective in inhibiting large tumor growth. EGCG was found to induce tumor cellular apoptosis in a dose-dependent manner. The combination of EGCG and DNA vaccination led to an enhanced tumor-specific T-cell immune response and enhanced antitumor effects, resulting in a higher cure rate than either immunotherapy or EGCG alone. In addition, combined DNA vaccination and oral EGCG treatment provided longterm antitumor protection in cured mice. Cured animals rejected a challenge of E7-expressing tumors, such as TC-1 and B16E7, but not a challenge of B16 7 weeks after the combined treatment, showing antigen-specific immune responses. These results suggest that multimodality treatment strategies, such as combining immunotherapy with a tumor-killing cancer drug, may be a more effective anticancer strategy than singlemodality treatments. [Cancer Res 2007;67(2):802-11]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.