This study uses mathematical modeling to examine a multi-product economic manufacturing quantity (EMQ) model with an enhanced end items issuing policy and rework failures. We assume that a multi-product EMQ model randomly generates nonconforming items. All of the defective are reworked, but a certain portion fails and becomes scraps. When rework process ends and the entire lot of each product is quality assured, a cost reduction n + 1 end items issuing policy is used to transport finished items of each product. As a result, a closed-form optimal production cycle time is obtained. A numerical example demonstrates the practical usage of our result and confirms a significant savings in stock holding and overall production costs as compared to that of a prior work (Chiu et al. in J Sci Ind Res India, 72:435–440 2013) in the literature.
The main purpose of this paper is to investigate the case where the retailer’s unit selling price and the purchasing price per unit are not necessarily equal within the economic production quantity (EPQ) framework under cash discount and permissible delay in payments. We establish the retailer’s inventory system as a cost minimization problem to determine the retailer’s optimal inventory cycle time, optimal order quantity and optimal payment time. This paper provides an algebraic approach to determine the optimal cycle time, optimal order quantity and optimal payment time. This approach provides one theorem to efficiently determine the optimal solution. Some previously published results of other researchers are deduced as special cases. Finally, numerical examples are given to illustrate the result and the managerial insights are also obtained
This study employs mathematical modeling to explore the effects of overtime option, rework, and discontinuous end-item issuing policy on the economic manufacturing quantity (EMQ) model. Conventional EMQ model assumed that all products fabricated are of good quality and are issued under continuous policy. In real world, however, nonconforming items are randomly produced, due to diverse unexpected factors in fabrication process. When finished items are to be distributed to outside locations, discontinuous multi-shipment policy is often used rather than continuous rule. In addition, with the intention of increasing short-term capacity or shortening replenishment cycle length to smooth the production planning, adopting overtime option can be an effective strategy. To cope with the aforementioned features in real production systems, this study incorporates overtime option, rework, and multi-shipment policy into the EMQ model and explores their joint effects on optimal lot size and number of shipments, and on other relevant system parameters. Mathematical modeling and Hessian matrix equations enable us to derive the optimal policies to the problem. Through the use of numerical example, the applicability of research result is exhibited and a variety of significant effects of these features on the proposed system are revealed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.