Axonal cytoskeletal and cytosolic proteins are synthesized in the neuronal cell body and transported along axons by slow axonal transport, but attempts to observe this movement directly in living cells have yielded conflicting results. Here we report the direct observation of the axonal transport of neurofilament protein tagged with green fluorescent protein in cultured nerve cells. Live-cell imaging of naturally occurring gaps in the axonal neurofilament array reveals rapid, intermittent and highly asynchronous movement of fluorescent neurofilaments. The movement is bidirectional, but predominantly anterograde. Our data indicate that the slow rate of slow axonal transport may be the result of rapid movements interrupted by prolonged pauses.
Rationale: Constitutive activation of the epidermal growth factor receptor (EGFR) is prevalent in epithelial cancers, particularly in non-small cell lung carcinoma (NSCLC). Mutations identified in EGFR predict the sensitivity to EGFR-targeted therapy. Detection of these mutations is mainly based on tissue biopsy, which is invasive, expensive, and time consuming.Objectives: Noninvasive, real-time, inexpensive detection and monitoring of EGFR mutations in patients with NSCLC is highly desirable.Methods: We developed a novel core technology, electric field-induced release and measurement (EFIRM), which relies on a multiplexible electrochemical sensor that can detect EGFR mutations directly in bodily fluids.Measurements and Main Results: We established EFIRM for the detection of the EGFR mutations in vitro and correlated the results with tumor size from xenografted mice. In clinical application, we demonstrated that EFIRM could detect EGFR mutations in the saliva and plasma of 22 patients with NSCLC. Finally, a blinded test was performed on saliva samples from 40 patients with NSCLC. The receiver operating characteristic analysis indicated that EFIRM detected the exon 19 deletion with an area under the curve of 0.94 and the L858R mutation with an area under the curve of 0.96.Conclusions: Our data indicate that EFIRM is effective, accurate, rapid, user-friendly, and cost effective for the detection of EGFR mutations in the saliva of patients with NSCLC. We termed this saliva-based EGFR mutation detection (SABER).
Recepteur d'Origine Nantais (RON) is a distinct receptor tyrosine kinase in the c-met proto-oncogene family. We examined the mutational and expression patterns of RON in eight human uroepithelial cell lines. Biological effects of RON overexpression on cancer cells were investigated in vitro, and the prognostic significance of RON and/or c-met protein (MET) expression was analysed in a bladder cancer cohort (n ¼ 183). There was no evidence of mutation in the kinase domain of RON. Overexpression of RON using an inducible Tet-off system induced increased cell proliferation, motility, and antiapoptosis. Immunohistochemical analysis showed that RON was overexpressed in 60 cases (32.8%) of primary tumours, with 14 (23.3%) showing a high level of expression. Recepteur d'Origine Nantais expression was positively associated with histological grading, larger size, nonpapillary contour, and tumour stage (all Po0.01). In addition, MET was overexpressed in 82 cases (44.8%). Co-expressed RON and MET was significantly associated with decreased overall survival (P ¼ 0.005) or metastasis-free survival (P ¼ 0.01) in 35 cases (19.1%). Recepteur d'Origine Nantaisassociated signalling may play an important role in the progression of human bladder cancer. Evaluation of RON and MET expression status may identify a subset of bladder-cancer patients who require more intensive treatment.
Molecular genetic changes that are associated with the initiating stage of tumor development are important in tumorigenesis. Ovarian serous borderline tumors (SBTs), putative precursors of low-grade serous carcinomas, are among the few human neoplasms with a high frequency of activating mutations in BRAF and KRAS genes. However, it remains unclear as to how these mutations contribute to tumor progression. To address this issue, we compared the mutational status of BRAF and KRAS in both SBTs and the adjacent epithelium from cystadenomas, the presumed precursor of SBTs. We found that three of eight SBTs contained mutant BRAF, and four SBTs contained mutant KRAS. All specimens with mutant BRAF harbored wild-type KRAS and vice versa. Thus, seven (88%) of eight SBTs contained either BRAF or KRAS mutations. The same mutations detected in SBTs were also identified in the cystadenoma epithelium adjacent to the SBTs in six (86%) of seven informative cases. As compared to SBTs, the cystadenoma epithelium, like ovarian surface epithelium, lacks cytological atypia. Our findings provide cogent evidence that mutations of BRAF and KRAS occur in the epithelium of cystadenomas adjacent to SBTs and strongly suggest that they are very early events in tumorigenesis, preceding the development of SBT.
Ocular manifestations occur in a high proportion of patients with EM/SJS/TEN. The most frequent causes were carbamazepine and allopurinol. A careful medication history should be obtained from these patients. Ophthalmic consultation, evaluation, and management are mandatory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.