Previous studies have demonstrated that oral stimulation with quinine elicits Fos-like immunoreactivity in the first-order gustatory nucleus, the NST, with a different topographic distribution than sucrose or citric acid. However, it is unknown whether the quinine pattern is unique to this alkaloid or common across bitter stimuli with different chemical structures. Indeed, recent physiological experiments suggest that taste receptor cells and primary afferent neurons may exhibit selectivity for various bitter tastants. The present investigation compared the distribution of FLI in NST following stimulation with three bitter chemicals: QHCl, denatonium and propylthiouracil, stimuli that evoked Ca(2+) currents in almost entirely different sets of receptor cells. The results demonstrate that the quinine pattern is not idiosyncratic but instead generalizes to the other two tastants. Although it remains possible that intermingled but different NST neurons are activated by these stimuli, these data suggest that a specialized region in the NST is preferentially involved in processing a common aspect of bitter tastants. In contrast to citric acid, quinine, denatonium and propylthiouracil all elicited vigorous oromotor rejection responses, consistent with our earlier hypothesis that the medial third of the NST may be an afferent trigger zone for oromotor rejection.
Cocaine experience affects motivation structures such as the nucleus accumbens (NAc) and its major output target, the ventral pallidum (VP). Previous studies demonstrated that both NAc activity and hedonic responses change reliably as a taste cue comes to predict cocaine availability. Here we extended this investigation to examine drug-experience induced changes in hedonic encoding in the VP. VP activity was first characterized in adult male Sprague-Dawley rats in response to intraoral infusions of palatable saccharin and unpalatable quinine solutions. Next, rats received 7 daily pairings of saccharin that predicted either a cocaine (20 mg/kg, ip) or saline injection. Finally, the responses to saccharin and quinine were again assessed. Of 109 units recorded in 11 rats that received saccharin-cocaine pairings, 71% of responsive units significantly reduced firing rate during saccharin infusions and 64% increased firing rate during quinine exposure. However, as saccharin came to predict cocaine, and elicited aversive taste reactivity, VP responses changed to resemble quinine. After conditioning, 70% of saccharin-responsive units increased firing rate. Most units that encoded the palatable taste (predominantly reduced firing rate) were located in the anterior VP, while most units that were responsive to aversive tastes were located in the posterior VP. This study reveals an anatomical complexity to the nature of hedonic encoding in the VP.
Background The abused volatile solvent toluene shares many behavioral effects with classic central nervous system depressants such as ethanol. Similarities between toluene and ethanol have also been demonstrated using in vitro electrophysiology. Together, these studies suggest that toluene and ethanol may be acting, at least in part, via common mechanisms. Methods We used the genetic model, C. elegans, to examine the behavioral effects of toluene in a simple system, and used mutant strains known to have altered responses to other CNS depressants to examine the involvement of those genes in the motor effects induced by toluene. Results Toluene vapor brings about an altered pattern of locomotion in wild-type worms that is visibly distinct from that generated by ethanol. Mutants of the slo-1, rab-3 and unc-64 genes that are resistant to ethanol or the volatile anesthetic halothane show no resistance to toluene. A mutation in the unc-79 gene results in hypersensitivity to ethanol, halothane and toluene indicating a possible convergence of mechanisms of the three compounds. We screened for, and isolated, two mutations that generate resistance to the locomotor depressing effects of toluene and do not alter sensitivity to ethanol. Conclusions In C. elegans, ethanol and toluene have distinct behavioral effects and minimal overlap in terms of the genes responsible for these effects. These findings demonstrate that the C. elegans model system provides a unique and sensitive means of delineating both the commonalities as well as the differences in the neurochemical effects of classical CNS depressants and abused volatile inhalants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.