The results of Fe2+‐induced decomposition of the clinically used artemisinins, artemisone, other aminoartemisinins, 10‐deoxoartemisinin, and the 4‐fluorophenyl derivative have been compared with their antimalarial activities and their ability to inhibit the parasite SERCA PfATP6. The clinical artemisinins and artemisone decompose under aqueous conditions to give mixtures of C radical marker products, carbonyl compounds, and reduction products. The 4‐fluorophenyl derivative and aminoartemisinins tend to be inert to aqueous iron(II) sulfate and anhydrous iron(II) acetate. Anhydrous iron(II) bromide enhances formation of the carbonyl compounds and provides a deoxyglycal from DHA and enamines from the aminoartemisinins. Ascorbic acid (AA) accelerates the aqueous Fe2+‐mediated decompositions, but does not alter product distribution. 4‐Oxo‐TEMPO intercepts C radicals from a mixture of an antimalaria‐active trioxolane, 10‐deoxoartemisinin, and anhydrous iron(II) acetate to give trapped products in 73 % yield from the trioxolane, and 3 % from the artemisinin. Artemisone provides a trapped product in 10 % yield. Thus, in line with its structural rigidity, only the trioxolane provides a C radical eminently suited for intermolecular trapping. In contrast, the structural flexibility of the C radicals from the artemisinins allows facile extrusion of Fe2+ and collapse to benign isomerization products. The propensity towards the formation of radical marker products and intermolecular radical trapping have no relationship with the in vitro antimalarial activities of the artemisinins and trioxolane. Desferrioxamine (DFO) attenuates inhibition of PfATP6 by, and antagonizes antimalarial activity of, the aqueous Fe2+‐susceptible artemisinins, but has no overt effect on the aqueous Fe2+‐inert artemisinins. It is concluded that the C radicals cannot be responsible for antimalarial activity and that the Fe2+‐susceptible artemisinins may be competitively decomposed in aqueous extra‐ and intracellular compartments by labile Fe2+, resulting in some attenuation of their antimalarial activities. Interpretations of the roles of DFO and AA in modulating antimalarial activities of the artemisinins, and a comparison with antimalarial properties of simple hydroperoxides and their behavior towards thapsigargin‐sensitive SERCA ATPases are presented. The general basis for the exceptional antimalarial activities of artemisinins in relation to the intrinsic activity of the peroxide within the uniquely stressed environment of the malaria parasite is thereby adumbrated.
Artesunate drug substance, for which a rectal capsule formulation is under development for the treatment of severe malaria, when heated at 100 degrees C for 39 h gives beta-artesunate, artesunate dimers, 9,10-anhydrodihydroartemisinin (glycal), a DHA beta-formate ester, and smaller amounts of other products that arise via intermediate formation of dihydroartemisinin (DHA) and subsequent thermal degradation. Solid DHA at 100 degrees C provides an epimeric mixture of a known peroxyhemiacetal, arising via ring opening to a hydroperoxide and re-closure, smaller amounts of a 3:1 mixture of epimers of a known tricarbonyl compound, and a single epimer of a new dicarbonyl compound. The latter arises via homolysis of the peroxide and an ensuing cascade of alpha-cleavage reactions which leads to loss of formic acid incorporating the C10 carbonyl group of DHA exposed by this 'unzipping' cascade. The tricarbonyl compound that arises via peroxide homolysis and extrusion of formic acid from a penultimate hydroxyformate ester incorporating C12 of the original DHA, is epimeric at the exocyclic 1''-aldehyde, and not in the cyclohexanone moiety. It is converted into the dicarbonyl compound by peroxide-induced deformylation. The dicarbonyl compound is not formed during anhydrous ferrous bromide mediated decomposition of DHA at room temperature, which provides the 1''-R epimer of the tricarbonyl compound as the dominant product; this equilibrates at room temperature to the 3:1 mixture of epimers of the tricarbonyl compound obtained from thermolysis. Each of artesunate and DHA decomposes readily under aqueous acidic conditions to provide significant amounts of the peroxyhemiacetal, which, like DHA, decomposes to the inert end product 2-deoxyartemisinin under acidic or basic conditions. DHA and the peroxyhemiacetal are the principal degradants in aged rectal capsule formulations of artesunate. TGA analysis and thermal degradation of DHA reveals a thermal lability which would pose a problem not only in relation to ICH stability testing guidelines, but in the use of DHA in fixed formulations currently under development. This thermolability coupled with the poor physicochemical properties and relative oral bioavailability of DHA suggests that it is inferior to artesunate in application as an antimalarial drug.
As the clinically used artemisinins do not withstand the thermal stress testing required to evaluate shelf life for storage in tropical countries where malaria is prevalent, there is a need to develop thermally more robust artemisinin derivatives. Herein we describe the attachment of electron-withdrawing arene- and alkanesulfonyl and -carbonyl groups to the nitrogen atom of the readily accessible Ziffer 11-azaartemisinin to provide the corresponding N-sulfonyl- and -carbonylazaartemisinins. Two acylurea analogues were also prepared by treatment of the 11-azaartemisinin with arylisocyanates. Several of the N-sulfonylazaartemisinins have melting points above 200 degrees C and possess substantially greater thermal stabilities than the artemisinins in current clinical use, with the antimalarial activities of several of the arylsulfonyl derivatives being similar to that of artesunate against the drug-sensitive 3D7 clone of the NF54 isolate and the multidrug-resistant K1 strain of P. falciparum. The compounds possess relatively low cytotoxicities. The carbonyl derivatives are less crystalline than the N-sulfonyl derivatives, but are generally more active as antimalarials. The N-nitroarylcarbonyl and arylurea derivatives possess sub-ng ml(-1) activities. Although several of the azaartemisinins possess log P values below 3.5, the compounds have poor aqueous solubility (<1 mg L(-1) at pH 7). The greatly enhanced thermal stability of our artemisinins suggests that strategic incorporation of electron-withdrawing polar groups into both new artemisinin derivatives and totally synthetic trioxanes or trioxolanes may assist in the generation of practical new antimalarial drugs which will be stable to storage conditions in the field, while retaining favorable physicochemical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.