This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features.
The proposed CAD algorithm could effectively and reliably differentiate benign and malignant lesions. The proposed morphologic features were nearly setting independent and could tolerate reasonable variation in boundary delineation.
Identification of possible protein targets of small chemical molecules is an important step for unravelling their underlying causes of actions at the molecular level. To this end, we construct a web server, idTarget, which can predict possible binding targets of a small chemical molecule via a divide-and-conquer docking approach, in combination with our recently developed scoring functions based on robust regression analysis and quantum chemical charge models. Affinity profiles of the protein targets are used to provide the confidence levels of prediction. The divide-and-conquer docking approach uses adaptively constructed small overlapping grids to constrain the searching space, thereby achieving better docking efficiency. Unlike previous approaches that screen against a specific class of targets or a limited number of targets, idTarget screen against nearly all protein structures deposited in the Protein Data Bank (PDB). We show that idTarget is able to reproduce known off-targets of drugs or drug-like compounds, and the suggested new targets could be prioritized for further investigation. idTarget is freely available as a web-based server at http://idtarget.rcas.sinica.edu.tw.
Posttreatment pathologic TNM stage is correlated to disease-free survival and tumor recurrence rate in locally advanced rectal cancer after preoperative chemoradiation. Also, pathologic complete response to neoadjuvant treatment has its oncologic benefit in both overall recurrence and disease-free survival.
A new volumetric model-based 2D to 3D registration method has been developed for measuring 3D in vivo kinematics of natural knee joints with single-plane fluoroscopy. With the equipment used in the current study, the accuracy of the WEMS method is considered acceptable for the measurement of the 3D kinematics of the natural knee in clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.