The device conceptualization and proof-of-concept testing of two-dimensional (2D) materials are performed with their pristine forms that are obtained through the micromechanical cleaving of bulk natural crystals, i.e., the so-called Scotch tape method. However, obtaining large 2D sheets is very difficult and time consuming. We developed a systematic exfoliation technique for producing submillimeter-sized (the largest lateral dimension ever reported) pristine 2D sheets with high throughput. It requires the treatment of both the bulk crystal and receiving substrate. Contrary to the conventional Scotch tape technique that involves the repeated folding and unfolding of an adhesive tape, the flake is stamped onto an adhesive tape to preserve the lateral size of the bulk crystal, to improve the surface flatness, and to reduce the amount of residue on the surface of the samples. When applied to graphene, the method produced monolayer and few layer graphene samples that were several hundreds of microns in length. Surprisingly, the biggest monolayer graphene sample of 367 μm in length was easily produced. The technique was also applied to produce pristine MoS 2 and phosphorene sheets of about 45 μm and 95 μm in length, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.