SummarySigma-F, the first sporulation-specific transcription factor of Bacillus subtilis, is regulated by an antisigma factor SpoIIAB, which can also act as a protein kinase that phosphorylates the anti-anti-sigma factor SpoIIAA. The time course of phosphorylation reaction is biphasic, a fact that has been interpreted in terms of a mechanism for sequestering SpoIIAB away from s F and thus allowing activation of s F when needed.Site-directed mutagenesis of SpoIIAA has allowed us to isolate two mutants that cannot activate s F and which are therefore Spo 2 . The two mutant SpoIIAA proteins, SpoIIAAL61A and SpoIIAAL90A, are phosphorylated with linear kinetics; in addition they are less able to form the stable non-covalent complex that wild-type SpoIIAA makes with SpoIIAB in the presence of ADP. The phosphorylated form of SpoIIAAL90A was hydrolysed by the specific phosphatase SpoIIE at the same rate as wild-type SpoIIAA-P, but the rate of hydrolysis of SpoIIAAL61A-P was much slower. The secondary structure and the global fold of the mutant proteins were unchanged from the wild type. The results are interpreted in terms of a model for the wild type in which SpoIIAB, after phosphorylating SpoIIAA, is released in a form that is tightly bound to ADP and which then makes a ternary complex with an unreacted SpoIIAA. We propose that it is the inability to make this ternary complex that deprives the mutant cells of a means of keeping SpoIIAB from inhibiting s F .
Phosphorylation of SpoIIAA catalyzed by SpoIIAB helps to regulate the first sporulation-specific factor, F , of Bacillus subtilis. The steady-state rate of phosphorylation is known to be exceptionally slow and to be limited by the return of the protein kinase, SpoIIAB, to a catalytically active state. Previous work from this laboratory has suggested that, after catalyzing the phosphorylation, SpoIIAB is in a form (SpoIIAB*) that does not readily release ADP. We now show that the rate of release of ADP from the SpoIIAB*-ADP complex was much diminished by the presence of unreacted SpoIIAA, suggesting that SpoIIAA can form a long-lived ternary complex with SpoIIAB*-ADP in which the SpoIIAB* form is stabilized. In kinetic studies of the phosphorylation of SpoIIAA, the ternary complex SpoIIAA-SpoIIAB*-ADP could be distinguished from the short-lived complex SpoIIAA-SpoIIAB-ADP, which can be readily produced in the absence of an enzymatic reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.