Conventionally, a pulse taking platform is based on a single sensor, which initiates a feasible method of quantitative pulse diagnosis. The aim of this paper is to implement a pulse taking platform with a tactile array sensor. Three-dimensional wrist pulse signals are constructed, and the length, width, ascending slope, and descending slope are defined following the surface of the wrist pulse. And the pressure waveform of the wrist pulse obtained through proposed pulse-taking platform has the same performance as the single sensor. Finally, the results of a paired samples t-test reveal that the repeatability of the proposal platform is consistent with clinical experience. On the other hand, the results of ANOVA indicate that differences exist among different pulse taking depths, and this result is consistent with clinical experience in traditional Chinese medicine pulse diagnosis (TCMPD). Hence, the proposed pulse taking platform with an array sensor is feasible for quantification in TCMPD.
Background: A stringlike pulse is highly related to hypertension, and many classification approaches have been proposed in which the differentiation pulse wave (dPW) can effectively classify the stringlike pulse indicating hypertension. Unfortunately, the dPW method cannot distinguish the spring stringlike pulse from the stringlike pulse so labeled by physicians in clinics. Design: By using a Bi-Sensing Pulse Diagnosis Instrument (BSPDI), this study proposed a novel Plain Pulse Wave (PPW) to classify a stringlike pulse based on an array of pulse signals, mimicking a Traditional Chinese Medicine physician's finger-reading skill. Results: In comparison to PPWs at different pulse taking positions, phase delay Dhand correlation coefficient r can be elucidated as the quantification parameters of stringlike pulse. As a result, the recognition rates of a hypertensive stringlike pulse, spring stringlike pulse, and non-stringlike pulse are 100%, 100%, 77% for PPW and 70%, 0%, 59% for dPW, respectively. Conclusions: Integrating dPW and PPW can unify the classification of stringlike pulse including hypertensive stringlike pulse and spring stringlike pulse. Hence, the proposed novel method, PPW, enhances quantification of stringlike pulse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.