Culturing cells in microfluidic “lab-on-a-chip” devices for time lapse microscopy has become a valuable tool for studying the dynamics of biological systems. Although microfluidic technology has been applied to culturing and monitoring a diverse range of bacterial and eukaryotic species, cyanobacteria and eukaryotic microalgae present several challenges that have made them difficult to culture in a microfluidic setting. Here, we present a customizable device for the long-term culturing and imaging of three well characterized strains of cyanobacteria and microalgae. This platform has several advantages over agarose pads and demonstrates great potential for obtaining high quality, single-cell gene expression data of cyanobacteria and algae in precisely controlled, dynamic environments over long time periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.