ObjectiveCell-cell (CC) and cell-matrix (CM) adhesions are essential for epithelial cell survival, yet dissociation-induced apoptosis is frequently circumvented in malignant cells.DesignWe explored CC and CM dependence in 58 gastric cancer (GC) organoids by withdrawing either ROCK inhibitor, matrix or both to evaluate their tumorigenic potential in terms of apoptosis resistance, correlation with oncogenic driver mutations and clinical behaviour. We performed mechanistic studies to determine the role of diffuse-type GC drivers: ARHGAP fusions, RHOA and CDH1, in modulating CC (CCi) or CM (CMi) adhesion independence.Results97% of the tumour organoids were CMi, 66% were CCi and 52% were resistant to double withdrawal (CCi/CMi), while normal organoids were neither CMi nor CCi. Clinically, the CCi/CMi phenotype was associated with an infiltrative tumour edge and advanced tumour stage. Moreover, the CCi/CMi transcriptome signature was associated with poor patient survival when applied to three public GC datasets. CCi/CMi and CCi phenotypes were enriched in diffuse-type GC organoids, especially in those with oncogenic driver perturbation of RHO signalling via RHOA mutation or ARHGAP fusions. Inducible knockout of ARHGAP fusions in CCi/CMi tumour organoids led to resensitisation to CC/CM dissociation-induced apoptosis, upregulation of focal adhesion and tight junction genes, partial reversion to a more normal cystic phenotype and inhibited xenograft formation. Normal gastric organoids engineered with CDH1 or RHOA mutations became CMi or CCi, respectively.ConclusionsThe CCi/CMi phenotype has a critical role in malignant transformation and tumour progression, offering new mechanistic information on RHO-ROCK pathway inhibition that contributes to GC pathogenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.