In order to perform the numerical simulations of forging response and establish the processing parameters for as-extruded 7075 aluminum alloy, the compressive deformation behavior of as-extruded 7075 aluminum alloy were investigated at the temperatures of 573 K, 623 K, 673 K and 723 K and the strain rates of 0.01 s , 1 s -1 and 10 s -1 on a Gleeble1500 thermo-mechanical simulator. Based on the analysis of the effect of strain, temperature and strain rate on flow stress, dynamic recrystallization (DRX) type softening characteristics of the stress-strain curve with single peak were identified. The traditional Arrhenius type model is in favor of the prediction for the flow stress at a fixed strain, and can not satisfy the need of the numerical simulations of various hot forming processes due to the lack of the effect of strain on flow stress. Lin et al. improved Arrhenius type model with a series of variable coefficients as functions of true strain (including activation energy of deformation Q, material constants n and a, and structure factor A) to predict the flow stress during the hot compression. The application has been demonstrated in this work for as-extruded 7075 aluminum alloy. The comparisons between the predicted and experimental results show that, for the worst case, the error in the flow stress estimate is 5.63%, and the max mean error is 3.6%. The developed model provides fast, accurate and consistent results, making it superior to the conventional Arrhenius type model. In further it can be used in computer code to model the forging response of 7075 aluminum alloy mechanical part members under the prevailing loading conditions.
In order to study the hot working behaviour of as-cast AZ80 magnesium alloy, a series of isothermal upsetting tests with height reduction of 60% were performed at the temperature range of 523-673 K and the strain rate range of 0.01-10 s -1 on a servo-hydraulic Gleeble-1500 machine simulator. Based on the regression analysis for Arrhenius type equation of flow stress, the activation energy of deformation was determined to be Q = 168.6606 KJ·mol -1 , and material constants A, n and α in the equation also were calculated respectively to predict the peak stress during hot deformation. A 7 th order polynomial was used to represent the influence of strain on these parameters (i.e Q, lnA, n and α). The Arrhenius equation was further developed by taking account of the effect of strain on the flow stress to describe the flow behavior during the whole experimental temperature and strain rate range. Then comparison between the predicted results and test results shows that the correlation coefficient and average absolute relative error is 0.99 and 6.63%, respectively. The flow stress predicted by developed equation can give an accurate and precise description of the flow behaviour for AZ80 magnesium alloy.
In order to investigate the compressive deformation behavior of 3Cr20Ni10W2 alloy, a series of isothermal upsetting experiments were carried out in the temperature range of 1203-1403 K and strain rate range of 0.01-10 s -1 on a Gleeble-1500 thermo-mechanical simulator. The results indicate that the flow stress initially increases to a peak value and then decreases gradually to a steady state. The characteristics of the curves are determined by the interaction of work hardening (WH), dynamic recovery (DRV) and dynamic recrystallization (DRX). The flow stress decreases with increasing temperature and decreasing strain rate. The relationship between microstructure and processing parameters is discussed to give an insight into the hot deformation behavior of 3Cr20Ni10W2 alloy. Then, by regression analysis for constitutive equation, material constants (n, α, β, A and Q) were calculated for the peak stress. Further, the constitutive equation along the flow curve was developed by utilizing an eighth order polynomial of strain for variable coefficients (including n, α, Α and Q). The validity of the developed constitutive equation incorporating the influence of strain was verified through comparing the experimental and predicted data by using standard statistical parameters such as correlation coefficient (R) and average absolute relative error (AARE) that are 0.995 and 4.08% respectively.
In order to understand the effects of the thermophysical properties of the melt on the transport phenomena in the Czochralski (Cz) furnace for the single crystal growth of silicon, a set of global analyses of momentum, heat and mass transfer in small Cz furnace (crucible diameter: 7.2 cm, crystal diameter: 3.5 cm, operated in a 10 Torr argon flow environment) was carried out using the finite-element method. The global analysis assumed a pseudosteady axisymmetric state with laminar flow. The results show that different thermophysical properties will bring different variations of the heater power, the deflection of the melt/crystal interface, the axial temperature gradient in the crystal on the center of the melt/crystal interface and the average oxygen concentration along the melt/crystal interface. The application of the axial magnetic field is insensitive to this effect. This analysis reveals the importance of the determination of the thermophysical property in numerical simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.