A multiplication theorem for the Lerch zeta function φ(s, a, ξ ) is obtained, from which, when evaluating at s = −n for integers n 0, explicit representations for the Bernoulli and Euler polynomials are derived in terms of two arrays of polynomials related to the classical Stirling and Eulerian numbers. As consequences, explicit formulas for some special values of the Bernoulli and Euler polynomials are given. 2005 Elsevier Inc. All rights reserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.