We consider Service-Oriented Computing (SOC) environments. Such environments are populated with services that stand proxy for a variety of information resources. A fundamental challenge in SOC is to select and compose services, to support specified user needs directly or by providing additional services. Existing approaches for service selection either fail to capture the dynamic relationships between services or assume that the environment is fully observable. In practical situations, however, consumers are often not aware of how the services are implemented. We propose two distributed trust-aware service selection approaches: one based on Bayesian networks and the other on a beta-mixture model. We experimentally validate our approach through a simulation study. Our results show that both approaches accurately punish and reward services in terms of the qualities they offer, and further that the approaches are effective despite incomplete observations regarding the services under consideration.
Leading agent-based trust models address two important needs. First, they show how an agent may estimate the trustworthiness of another agent based on prior interactions. Second, they show how agents may share their knowledge in order to cooperatively assess the trustworthiness of others. However, in real-life settings, information relevant to trust is usually obtained piecemeal, not all at once. Unfortunately, the problem of maintaining trust has drawn little attention. Existing approaches handle trust updates in a heuristic, not a principled, manner. This paper builds on a formal model that considers probability and certainty as two dimensions of trust. It proposes a mechanism using which an agent can update the amount of trust it places in other agents on an ongoing basis. This paper shows via simulation that the proposed approach (a) provides accurate estimates of the trustworthiness of agents that change behavior frequently; and (b) captures the dynamic behavior of the agents. This paper includes an evaluation based on a real dataset drawn from Amazon Marketplace, a leading e-commerce site.
We propose a simple method to align multilingual contextual embeddings as a postpretraining step for improved cross-lingual transferability of the pretrained language models. Using parallel data, our method aligns embeddings on the word level through the recently proposed Translation Language Modeling objective as well as on the sentence level via contrastive learning and random input shuffling. We also perform sentence-level code-switching with English when finetuning on downstream tasks. On XNLI, our best model (initialized from mBERT) improves over mBERT by 4.7% in the zero-shot setting and achieves comparable result to XLM for translate-train while using less than 18% of the same parallel data and 31% fewer model parameters. On MLQA, our model outperforms XLM-R Base , which has 57% more parameters than ours.
Abstract-Service selection, where some of the services are accessed indirectly as constituents of composite services, is difficult for the following reasons: (1) the interpretation of service qualities is subjective; (2) evidence must be combined from multiple sources; (3) service profiles change dynamically; and (4) constituent services may be only partially observable behind composite services. We propose an approach where we map service qualities to a common probabilistic trust metric. Whereas current trust approaches estimate the trustworthiness of a composite service based on a fully observable and static setting, we propose a statistical approach built on expectation maximized over a finite mixture model. Our experiments show that our approach can dynamically punish or reward the constituents of composite services while making only partial observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.