Pure cultures of Botryococcus sp. microalgae have great potential for generating huge amounts of algae lipid that can be further converted into biodiesel. Lipids with nanometer in size can be applied to medicine and pharmacy recently. In this study, the effects of light intensity and CO2 concentration on the biomass productivity, lipid content, and lipid productivity of Botryococcus braunii were examined in 21-day intervals. The optimum cultivating conditions for biomass accumulation were 6,000 lux with 0.04% CO2 and 21 days of culturing; this provided the highest biomass productivity of 140.46 mg L(-1) d(-1). The highest lipid productivity of 44.46 mg L(-1) d(-1) occurred at 6,000 lux with 5% CO2 and 21 days of culturing. The maximum specific growth rate (micro(max)) was similar among different concentrations of CO2 (0.682 d(-1) under 12,000 lux at 10% CO2; 0.585 d(-1) under 6,000 lux at 5% CO2). Culturing at 5% or 10% CO2 has been shown to enhance the accumulation of lipids, introducing the possibility of using flue gas as a carbon source. The nanotechnology in this study will be helpful towards research in green science and engineering such as bio-fixation of CO2 and drug delivery systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.