Abstract-This paper presents a phase-resolved optical coherence tomography (OCT) system that uses the polarization quadrature encoding method in a two-channel Mach-Zehnder interferometer. OCT is a powerful optical signal acquisition method that can capture depth-resolved micrometer-resolution images. In our method, a complex signal is optically generated, and its real and imaginary components are encoded in the orthogonal polarization states of one sample beam; absolute phase information can then be acquired instantaneously. Neither phase modulation nor numerical Fourier or Hilbert transformation to extract phase information is required, thereby decreasing data acquisition rates and processing time. We conducted signal post-processing to select data from the instabilities of reference scanning delay lines; the measured phase sensitivity was as low as 0.23 • , and the corresponding path-difference resolution was 265 pm. A localized surface profile measurement of a chromiumcoated layer deposited on a commercial resolution target surface was conducted. The results confirmed that successful images can be obtained even with very small optical path differences using the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.