Considering the characteristics of complex nonlinear and multiple response variables of a super-high dam, kernel partial least squares (KPLS) method, as a strongly nonlinear multivariate analysis method, is introduced into the field of dam safety monitoring for the first time. A universal unified optimization algorithm is designed to select the key parameters of the KPLS method and obtain the optimal kernel partial least squares (OKPLS). Then, OKPLS is used to establish a strongly nonlinear multivariate safety monitoring model to identify the abnormal behavior of a super-high dam via model multivariate fusion diagnosis. An analysis of deformation monitoring data of a super-high arch dam was undertaken as a case study. Compared to the multiple linear regression (MLR), partial least squares (PLS), and KPLS models, the OKPLS model displayed the best fitting accuracy and forecast precision, and the model multivariate fusion diagnosis reduced the number of false alarms compared to the traditional univariate diagnosis. Thus, OKPLS is a promising method in the application of super-high dam safety monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.