This letter presents an incremental voxel-based lidarinertial odometry (LIO) method for fast-tracking spinning and solid-state lidar scans. To achieve the high tracking speed, we neither use complicated tree-based structures to divide the spatial point cloud nor the strict k nearest neighbor (k-NN) queries to compute the point matching. Instead, we use the incremental voxels (iVox) as our point cloud spatial data structure, which is modified from the traditional voxels and supports incremental insertion and parallel approximated k-NN queries. We propose the linear iVox and PHC (Pseudo Hilbert Curve) iVox as two alternative underlying structures in our algorithm. The experiments show that the speed of iVox reaches 1000-2000 Hz per scan in solid-state lidars and over 200 Hz for 32 lines spinning lidars only with a modern CPU while still preserving the same level of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.