In this study, a simple and reproducible synthesis strategy was developed to fabricate mesoporous carbon nanofibers (MCNFs) by using dual hard templates, a porous anodic aluminum oxide (AAO) membrane, and colloidal silica (Ludox TM-40). By using commercial templates, and removing AAO and the silica simultaneously, the synthesis procedures for MCNFs are greatly simplified without the need for separate preparation or the removal of templates in sequence. With phenol resin as a carbon precursor, the as-prepared MCNFs material reveals not only high surface area and mesoporous volume but also hierarchical nanostructure composed of hollow macrochannels derived from the AAO template, large mesopores (ca. 22 nm) from the removal of silica particles and micropores from the carbonization of phenol resin. Such unique surface and structural characteristics could provide a large quantity of active sites for Li storage and facilitate fast mass transport. Moreover, a one-dimensional (1D) carbon nanofiber (CNF) nanostructure favors fast electron transfer. The as-prepared MCNF anode demonstrates ultrahigh lithium storage capacity particularly at high rates, which is much higher than that reported for the commercial graphite and also significantly higher than other nanostructured carbon materials, such as ordered mesoporous carbon CMK-3 and ordered multimodal porous carbon (OMPC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.