This study investigated the extent of heavy metal accumulation in leaf vegetables and associated potential health risks in agricultural areas of the Pearl River Delta (PRD), South China. Total concentrations of mercury (Hg), cadmium (Cd), lead (Pb), chromium (Cr) and arsenic (As) were determined in 92 pairs of soil and leaf vegetable (flowering Chinese cabbage, lettuce, pakchoi, Chinese cabbage, loose-leaf lettuce, and Chinese leaf mustard) samples collected from seven agricultural areas (cities). The bioconcentration factors (BCF) of heavy metals from soil to vegetables were estimated, and the potential health risks of heavy metal exposure to the PRD residents through consumption of local leaf vegetables were assessed. Results showed that among the six leaf vegetables, pakchoi had the lowest capacity for heavy metal enrichment, whereas among the five heavy metals, Cd had the highest capacity for transferring from soil into vegetables, with BCF values 30-fold those of Hg and 50-fold those of Cr, Pb and As. Sewage irrigation and fertilization were likely the main sources of heavy metals accumulated in leaf vegetables grown in agricultural areas of the PRD region. Different from previous findings, soil pH had no clear effect on metal accumulation in leaf vegetables. Despite a certain degree of metal enrichment from soil to leaf vegetables, the PRD residents were not exposed to significant health risks associated with consumption of local leaf vegetables. Nevertheless, more attention should be paid to children due to their sensitivity to metal pollutants.
Plasma LDL levels and atherosclerosis both increase on a saturated fat-rich (SAT) diet. LDL cholesterol delivery to tissue may occur via uptake of the LDL particles or via selective uptake (SU), wherein cholesteryl ester (CE) enters cells without concomitant whole-particle uptake. It is not known how dietary fats might directly affect arterial LDL-CE uptake and whether SU is involved. Thus, mice that are relatively atherosclerosis resistant (C57BL/6) or susceptible to atherosclerosis (apoE -/-) were fed a chow or SAT diet and injected with double radiolabeled or fluorescent-labeled human LDL to independently trace LDL-CE core and whole-particle uptake, respectively. Our results show that a SAT diet increased contributions of SU to total arterial LDL-CE delivery in C57BL/6 and apoE -/-mice. The SAT diet increased plasma fatty acid and cholesterol levels; cholesterol, but not fatty acid, levels correlated with SU, as did the degree of atherosclerosis. Increased SU did not correlate with arterial scavenger receptor class B type I levels but paralleled increased lipoprotein lipase (LPL) levels and LPL distribution in the arterial wall. These studies suggest that arterial LDL-CE delivery via SU can be an important mechanism in vivo and that dietary influences on arterial LPL levels and atherogenesis modulate arterial LDL-CE delivery, cholesterol deposition, and SU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.