BackgroundElectrical stimulation (ES) has been proven to be an effective means of enhancing the speed and accuracy of nerve regeneration. However, these results were recorded when the procedure was performed almost immediately after nerve injury. In clinical settings, most patients cannot be treated immediately. Some patients with serious trauma or contaminated wounds need to wait for nerve repair surgery. Delays in nerve repair have been shown to be associated with poorer results than immediate surgery. It is not clear whether electrical stimulation still has any effect on nerve regeneration after enough time has elapsed.MethodsA delayed nerve repair model in which the rats received delayed nerve repair after 1 day, 1 week, 1 month, and 2 months was designed. At each point in time, the nerve stumps of half the rats were bridged with an absorbable conduit and the rats were given 1 h of weak electrical stimulation. The other half was not treated. In order to analyze the morphological and molecular differences among these groups, 6 ES rats and 6 sham ES rats per point in time were killed 5 days after surgery. The other rats in each group were allowed to recover for 6 weeks before the final functional test and tissue observation.ResultsThe amounts of myelinated fibers in the distal nerve stumps decreased as the delay in repair increased for both ES rats and sham ES rats. In the 1-day-delay and 1-week-delay groups, there were more fibers in ES rats than in sham ES rats. And the compound muscle action potential (CMAP) and motor nerve conduction velocity (MNCV) results were better for ES rats in these two groups. In order to analyze the mechanisms underlying these differences, Masson staining was performed on the distal nerves and quantitative PCR on the spinal cords. Results showed that, after delays in repair of 1 month and 2 months, there was more collagen tissue hyperplasia in the distal nerve in all rats. The brain-derived neurotrophic factor (BDNF) and trkB expression levels in the spinal cords of ES rats were higher than in sham ES rats. However, these differences decreased as the delay in repair increased.ConclusionsElectrical stimulation does not continue to promote nerve regeneration after long delays in nerve repair. The effective interval for nerve regeneration after delayed repair was found to be less than 1 month. The mechanism seemed to be related to the expression of nerve growth factors and regeneration environment in the distal nerves.
The combination of chronic dietary exposure to the fungal toxin, aflatoxin B 1 (AFB 1), and hepatitis B viral (HBV) infection is associated with an increased risk for early onset hepatocellular carcinomas (HCCs). An in-depth knowledge of the mechanisms driving carcinogenesis is critical for the identification of genetic risk factors affecting the susceptibility of individuals who are HBV infected and AFB 1 exposed. AFB 1-induced mutagenesis is characterized by G to T transversions. Hence, the DNA repair pathways that function on AFB 1-induced DNA adducts or base damage from HBV-induced inflammation are anticipated to have a strong role in limiting carcinogenesis.
We propose a genetic programming (GP)-based approach to analyze multiclass microarray datasets. Unlike the traditional GP, the individual proposed in this article consists of a set of small-scale ensembles, named as sub-ensemble (denoted by SE). Each SE consists of a set of trees. In application, a multiclass problem is divided into a set of two-class problems, each of which is tackled by a SE first. The SEs tackling the respective two-class problems are combined to construct a GP individual, so each individual can deal with a multiclass problem directly. Effective methods are proposed to solve the problems arising in the fusion of SEs, and a greedy algorithm is designed to keep high diversity in SEs. This GP is tested in five datasets. The results show that the proposed method effectively implements the feature selection and classification tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.