BackgroundThe re-establishment of malaria has become an important public health issue in and out of China, and receptivity to this disease is key to its re-emergence. Yingjiang is one of the few counties with locally acquired malaria cases in the China–Myanmar border in China. This study aimed to understand receptivity to malaria in Yingjiang County, China, from June to October 2016.MethodsLight-traps were employed to capture the mosquitoes in 17 villages in eight towns which were categorized into four elevation levels: level 1, 0–599 m; level 2, 600–1199 m; level 3, 1200–1799 m; and level 4, > 1800 m. Species richness, diversity, dominance and evenness were used to picture the community structure. Similarity in species composition was compared between different elevation levels. Data of seasonal abundance of mosquitoes, human biting rate, density of light-trap-captured adult mosquitoes and larvae, parous rate, and height distribution (density) of Anopheles minimus and Anopheles sinensis were collected in two towns (Na Bang and Ping Yuan) each month from June to October, 2016.ResultsOver the study period, 10,053 Anopheles mosquitoes were collected from the eight towns, and 15 Anopheles species were identified, the most-common of which were An. sinensis (75.4%), Anopheles kunmingensis (15.6%), and An. minimus (3.5%). Anopheles minimus was the major malaria vector in low-elevation areas (< 600 m, i.e., Na Bang town), and An. sinensis in medium-elevation areas (600–1200 m, i.e., Ping Yuan town). In Na Bang, the peak human-biting rate of An. minimus at the inner and outer sites of the village occurred in June and August 2016, with 5/bait/night and 15/bait/night, respectively. In Ping Yuan, the peak human-biting rate of An. sinensis was in August, with 9/bait/night at the inner site and 21/bait/night at the outer site. The two towns exhibited seasonal abundance with high density of the two adult vectors: The peak density of An. minimus was in June and that of An. sinensis was in August. Meanwhile, the peak larval density of An. minimus was in July, but that of An. sinensis decreased during the investigation season; the slightly acidic water suited the growth of these vectors. The parous rates of An. sinensis and An. minimus were 90.46 and 93.33%, respectively.ConclusionsThe Anopheles community was spread across different elevation levels. Its structure was complex and stable during the entire epidemic season in low-elevation areas at the border. The high human-biting rates, adult and larval densities, and parous rates of the two Anopheles vectors reveal an exceedingly high receptivity to malaria in the China–Myanmar border in Yingjiang County.
BackgroundThe China-Myanmar border region presents a great challenge in malaria elimination in China, and it is essential to understand the relationship between malaria vulnerability and population mobility in this region.MethodsA community-based, cross-sectional survey was performed in five villages of Yingjiang county during September 2016. Finger-prick blood samples were obtained to identify asymptomatic infections, and imported cases were identified in each village (between January 2013 and September 2016). A stochastic simulation model (SSM) was used to test the relationship between population mobility and malaria vulnerability, according to the mechanisms of malaria importation.ResultsThirty-two imported cases were identified in the five villages, with a 4-year average of 1 case/year (range: 0–5 cases/year). No parasites were detected in the 353 blood samples from 2016. The median density of malaria vulnerability was 0.012 (range: 0.000–0.033). The average proportion of mobile members of the study population was 32.56% (range: 28.38–71.95%). Most mobile individuals lived indoors at night with mosquito protection. The SSM model fit the investigated data (χ2 = 0.487, P = 0.485). The average probability of infection in the members of the population that moved to Myanmar was 0.011 (range: 0.0048–0.1585). The values for simulated vulnerability increased with greater population mobility in each village.ConclusionsA high proportion of population mobility was associated with greater malaria vulnerability in the China-Myanmar border region. Mobile population-specific measures should be used to decrease the risk of malaria re-establishment in China.Electronic supplementary materialThe online version of this article (10.1186/s40249-018-0423-6) contains supplementary material, which is available to authorized users.
Background The Anopheles hyrcanus group, which includes 25 species, is widely distributed in the Oriental and Palaearctic regions. Given the difficulty in identifying cryptic or sibling species based on their morphological characteristics, molecular identification is regarded as an important complementary approach to traditional morphological taxonomy. The aim of this study was to reconstruct the phylogeny of the Hyrcanus group using DNA barcoding markers in order to determine the phylogenetic correlations of closely related taxa and to compare these markers in terms of identification efficiency and genetic divergence among species. Methods Based on data extracted from the GenBank database and data from the present study, we used 399 rDNA–ITS2 sequences of 19 species and 392 mtDNA–COII sequences of 14 species to reconstruct the molecular phylogeny of the Hyrcanus group across its worldwide range. We also compared the performance of rDNA–ITS2 against that of mtDNA–COII to assess the genetic divergence of closely related species within the Hyrcanus group. Results Average interspecific divergence for the rDNA–ITS2 sequence (0.376) was 125-fold higher than the average intraspecies divergence (0.003), and average interspecific divergence for the mtDNA–COII sequence (0.055) was eightfold higher than the average intraspecies divergence (0.007). The barcoding gap ranged from 0.015 to 0.073 for rDNA–ITS2, and from 0.017 to 0.025 for mtDNA–COII. Two sets of closely related species, namely, Anophels lesteri and An. paraliae, and An. sinensis, An. belenrae and An. kleini, were resolved by rDNA–ITS2. In contrast, the relationship of An. sinensis/An. belenrae/An. kleini was poorly defined in the COII tree. The neutrality test and mismatch distribution revealed that An. peditaeniatus, An. hyrcanus, An. sinensis and An. lesteri were likely to undergo hitchhiking or population expansion in accordance with both markers. In addition, the population of an important vivax malaria vector, An. sinensis, has experienced an expansion after a bottleneck in northern and southern Laos. Conclusions The topology of the Hyrcanus group rDNA–ITS2 and mtDNA–COII trees conformed to the morphology-based taxonomy for species classification rather than for that for subgroup division. rDNA–ITS2 is considered to be a more reliable diagnostic tool than mtDNA–COII in terms of investigating the phylogenetic correlation between closely related mosquito species in the Hyrcanus group. Moreover, the population expansion of an important vivax malaria vector, An. sinensis, has underlined a potential risk of malaria transmission in northern and southern Laos. This study contributes to the molecular identification of the Anopheles hyrcanus group in vector surveillance. Graphical abstract
Background To develop an effective malaria vector intervention method in forested international border regions within the Greater Mekong Subregion (GMS), more in-depth studies should be conducted on local Anopheles species composition and bionomic features. There is a paucity of comprehensive surveys of biodiversity integrating morphological and molecular species identification conducted within the border of Laos and Cambodia. Methods A total of 2394 adult mosquitoes were trapped in the Cambodia–Laos border region. We first performed morphological identification of Anopheles mosquitoes and subsequently performed molecular identification using 412 recombinant DNA–internal transcribed spacer 2 (rDNA-ITS2) and 391 mitochondrial DNA–cytochrome c oxidase subunit 2 (mtDNA-COII) sequences. The molecular and morphological identification results were compared, and phylogenetic analysis of rDNA-ITS2 and mtDNA-COII was conducted for the sequence divergence among species. Results Thirteen distinct species of Anopheles were molecularly identified in a 26,415 km2 border region in Siem Pang (Cambodia) and Pathoomphone (Laos). According to the comparisons of morphological and molecular identity, the interpretation of local species composition for dominant species in the Cambodia–Laos border (An. dirus, An. maculatus, An. philippinensis, An. kochi and An. sinensis) achieved the highest accuracy of morphological identification, from 98.37 to 100%. In contrast, the other species which were molecularly identified were less frequently identified correctly (0–58.3%) by morphological methods. The average rDNA-ITS2 and mtDNA-COII interspecific divergence was respectively 318 times and 15 times higher than their average intraspecific divergence. The barcoding gap ranged from 0.042 to 0.193 for rDNA-ITS2, and from 0.033 to 0.047 for mtDNA-COII. Conclusions The Cambodia–Laos border hosts a high diversity of Anopheles species. The morphological identification of Anopheles species provides higher accuracy for dominant species than for other species. Molecular methods combined with morphological analysis to determine species composition, population dynamics and bionomic characteristics can facilitate a better understanding of the factors driving malaria transmission and the effects of interventions, and can aid in achieving the goal of eliminating malaria. Graphical Abstract
Background Vector control is still a pivotal method for preventing malaria, and its potency is weakened by the increasing resistance of vectors to chemical insecticides. As the most abundant and vital malaria vector in Southeast Asia, the chemical insecticide resistance status in Anopheles sinensis remains elusive in Laos, which makes it imperative to evaluate the true nature of chemical insecticide resistance-associated genetic mutations in An. sinensis in Laos. Methods Adult An. sinensis were collected from three border regions in Laos. DNA was extracted from individual mosquitoes. PCR amplification and DNA sequencing of a fragment containing codon 1014 of the voltage-gated sodium channel (vgsc) gene were completed to study the kdr allele frequency distribution, kdr intron polymorphism, population genetic diversity, and the evolutionary status of the kdr codon. The mitochondrial cytochrome c oxidase subunit II gene (COII) was amplified and sequenced to examine population variations, genetic differentiation, spatial population structure, population expansion, and gene flow patterns. Results Nine wild kdr haplotypes of the vgsc gene were detected in this study, and eight of them, namely 1014L1, 1014L2, 1014L4, 1014L7, 1014L9, 1014L10, 1014L11, and 1014L21, were discovered in the China–Laos border (northern Laos), while 1014L3 was only detected in the Thailand–Laos border (northwestern Laos) and Cambodia–Laos border (southern Laos). The newly identified haplotype, 1014L21, was uniquely distributed in the China–Laos border and was not identified in other countries. Based on sequence analysis of the mitochondrial COII genes, significant genetic differentiation and limited gene flow were detected between the China–Laos and Cambodia–Laos An. sinensis populations, which suggested that those two regions were genetically isolated. The distinct distribution of the kdr haplotype frequencies is probably the result of geographical isolation in mosquito populations. Conclusions Lack of kdr mutations in the vgsc gene was probably due to genetic isolation and the absence of intense selection pressure in the three border regions of Laos. This study reveals that pyrethroid-based chemical insecticides are still appropriate for battling An. sinensis in parts of Laos, and routine monitoring of chemical insecticide resistance should be continuously implemented and focused on more restricted areas as part of chemical insecticide resistance management. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.