Halide perovskite like methylammonium lead iodide perovskite (MAPbI3) with its prominent optoelectronic properties has triggered substantial concerns in photocatalytic H2 evolution. In this work, to attain preferable photocatalytic performance, a MAPbI3/cobalt phosphide (CoP) hybrid heterojunction is constructed by a facile in situ photosynthesis approach. Systematic investigations reveal that the CoP nanoparticle can work as co‐catalyst to not only extract photogenerated electrons effectively from MAPbI3 to improve the photoinduced charge separation, but also facilitate the interfacial catalytic reaction. As a result, the as‐achieved MAPbI3/CoP hybrid displays a superior H2 evolution rate of 785.9 µmol h−1 g−1 in hydroiodic acid solution within 3 h, which is ≈8.0 times higher than that of pristine MAPbI3. Furthermore, the H2 evolution rate of MAPbI3/CoP hybrid can reach 2087.5 µmol h−1 g−1 when the photocatalytic reaction time reaches 27 h. This study employs a facile in situ photosynthesis strategy to deposit the metal phosphide co‐catalyst on halide perovskite nanocrystals to conduct photocatalytic H2 evolution reaction, which may stimulate the intensive investigation of perovskite/co‐catalyst hybrid systems for future photocatalytic applications.
This paper presents a new approach to the analysis of mixed processeswhere Bt is a Brownian motion and Gt is an independent centered Gaussian process. We obtain a new canonical innovation representation of X, using linear filtering theory. When the kernelhas a weak singularity on the diagonal, our results generalize the classical innovation formulas beyond the square integrable setting. For kernels with stronger singularity, our approach is applicable to processes with additional "fractional" structure, including the mixed fractional Brownian motion from mathematical finance. We show how previously-known measure equivalence relations and semimartingale properties follow from our canonical representation in a unified way, and complement them with new formulas for Radon-Nikodym densities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.