The angiogenic growth factor vascular endothelial growth factor (VEGF) enhances endothelial cell migration through the activation of multiple signaling transduction pathways. Actin reorganization is an important component in VEGF-induced migration, yet the signaling pathways mediating this process remain unclear. Actin reorganization involves both actin polymerization and depolymerization, and in this study we demonstrate that VEGF-treatment regulates both of these activities. With respect to actin polymerization, our results indicate that the actin nucleation promoting factors (NPF) neural Wiskott-Aldrich syndrome protein (N-WASP) binds the SH2- plus SH3-domain containing adaptor protein Nck in both control and VEGF-treated cells. We had previously showed that VEGF treatment leads to the recruitment of Nck to activated receptor, and our current results indicate a VEGF-dependent redistribution of N-WASP to the cell surface. A Nck dominant-negative blocked Nck recruitment to receptor, blocked N-WASP cellular redistribution and attenuated actin stress fiber formation. With respect to actin depolymerization, VEGF-treatment led to the rapid phosphorylation of the actin depolymerization factor cofilin, and its upstream regulator, LIM-kinase (LIMK). Unlike what is observed in certain other cell types, the p21-activated kinase (PAK), a Nck binding protein, does not mediate VEGF-induced LIMK phosphorylation, as a PAK dominant-negative had no effect on this activity. The PAK dominant-negative also did not affect VEGF-induced actin reorganization. Pharmacological inhibitors of phosphoinositide-3 kinase (PI3-K) and the rho-activated kinase (ROCK) attenuated VEGF-induced LIMK phosphorylation, indicating a role for (PI3-K) and ROCK in the signaling pathways leading to regulation of LIMK activity.
Human epidermal growth factor receptors (HER, also known as ErbB) drive cellular proliferation, pro-survival and stress responses by activating several downstream kinases, in particular ERK, p38, JNK (SAPK), the PI3K/AKT, as well as various transcriptional regulators such as STAT3. When co-expressed, the first three members of HER family (HER1-3) can form homo- and hetero-dimers, and there is considerable evidence suggesting that the receptor dimers differentially activate intracellular signaling pathways. To better understand the interactions in this system, we pursued multi-factorial experiments where HER dimerization patterns and signaling pathways were rationally perturbed. We measured the activation of HER1-3 receptors and of the sentinel signaling proteins ERK, AKT, p38, JNK, STAT3 as a function of time in a panel of human mammary epithelial (HME) cells expressing different levels of HER1-3 stimulated with various ligand combinations. We hypothesized that the HER dimerization pattern is a better predictor of downstream signaling than the total receptor activation levels. We validated this hypothesis using a combination of model-based analysis to quantify the HER dimerization patterns, and by clustering the activation data in multiple ways to confirm that the HER receptor dimer is a better predictor of the signaling through p38, ERK and AKT pathways than the total HER receptor expression and activation levels. We then pursued combinatorial inhibition studies to identify the causal regulatory interactions between sentinel signaling proteins. Quantitative analysis of the collected data using the Modular Response Analysis (MRA) and its Bayesian Variable Selection Algorithm (BVSA) version allowed us to obtain a consensus regulatory interaction model, which revealed that STAT3 occupies a central role in the crosstalk between the studied pathways in HME cells. Results of the BVSA/MRA and cluster analysis were in agreement with each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.