Syntheses are presented of the 1,2-dichalcogenins: 1,2-dithiin, 1,2-diselenin, and 2-selenathiin, both substituted and unsubstituted. 1,2-Dithiin and 1,2-diselenin are prepared by reaction of PhCH2XNa (X = S or Se) with 1,4-bis(trimethylsilyl)-1,3-butadiyne followed by reductive cleavage and oxidation. 2-Selenathiin is similarly prepared using a mixture of PhCH2SeNa and PhCH2SNa. Reaction of titanacyclopentadienes with (SCN)2 or (SeCN)2 followed by bis(thiocyanate) or bis(selenocyanate) cyclization affords substituted 1,2-dithiins or 1,2-diselenins, respectively. With S2Cl2, 1,2-dithiins are directly formed from titanacyclopentadienes. Oxidation of 1,2-dithiins and 1,2-diselenins gives the corresponding 1-oxide and, with 1,2-dithiins and excess oxidant, 1,1-dioxides; oxidation of 2-selenathiin gives the 2-oxide. Electrochemical oxidation of 1,2-dichalcogenins, which have a twisted geometry, affords planar radical cations by an EC mechanism. One-electron AlCl3 oxidation of 3,6-diphenyl-1,2-dithiin gives the corresponding radical cation, characterized by EPR spectroscopy. Theoretical calculations result in a flattened structure for the 1,2-dithiin radical cation and a fully planar structure for the 1,2-diselenin radical cation. The 77Se NMR chemical shifts of 1,2-diselenin are characteristically high-field-shifted with respect to open chain diselenides in good agreement with results of GIAO-DFT calculations based on MP2 and DFT optimum geometries.
Gas-phase photoelectron spectroscopy and theoretical calculations are used to study the electronic structure of 1,2-dichalcogenins. Photoelectron spectra are reported for 1,2-dithiin, 3,6-dimethyl-1,2-dithiin, 3,6-diisopropyl-1,2-dithiin, 3,6-di-tert-butyl-1,2-dithiin, 2-selenathiin, 1,2-diselenin, 3,6-dimethyl-1,2-diselenin, and 3,6-di-tert-butyl-1,2-diselenin and are assigned on the basis of (a) trends in ionization cross sections as the ionization photon energy is varied and (b) shifts of the ionizations as chemical substitutions are made. The calculated properties of 1,2-dithiin and 3,6-dimethyl-1,2-dithiin are compared to experimental results. The first four filled frontier valence orbitals are associated with orbitals that can be described as being primarily carbon π and chalcogen lone pair in character. Comparison of spectra collected with He I, He II, and Ne I ionization sources for each compound indicate that there is a large degree of mixing of chalcogen and carbon character through most of the valence orbitals. The highest occupied molecular orbital of the selenium-containing compounds has more chalcogen character than the highest occupied molecular orbital of the 1,2-dithiins. The photoelectron spectra of 1,2-dithiin and 1,2-diselenin contain a sharp ionization that corresponds to removal of an electron from an orbital that is predominantly chalcogen−chalcogen σ bonding in character. The narrow ionization profile indicates fairly weak chalcogen−chalcogen σ bonding in this orbital, which would result in a corresponding weakly antibonding chalcogen−chalcogen σ* orbital. Computational results show that an orbital that is primarily S−S σ* in character is the lowest unoccupied molecular orbital of 1,2-dithiin, and electronic transition calculations show a low-energy HOMO-to-LUMO transition that can be described as a π/lone pair-to-σ* transition that explains the unusual color of 1,2-dichalcogenins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.