An excess of elemental sulfur is generated annually from hydrodesulfurization in petroleum refining processes; however, it has a limited number of uses, of which one example is the production of sulfuric acid. Despite this excess, the development of synthetic and processing methods to convert elemental sulfur into useful chemical substances has not been investigated widely. Here we report a facile method (termed 'inverse vulcanization') to prepare chemically stable and processable polymeric materials through the direct copolymerization of elemental sulfur with vinylic monomers. This methodology enabled the modification of sulfur into processable copolymer forms with tunable thermomechanical properties, which leads to well-defined sulfur-rich micropatterned films created by imprint lithography. We also demonstrate that these copolymers exhibit comparable electrochemical properties to elemental sulfur and could serve as the active material in Li-S batteries, exhibiting high specific capacity (823 mA h g(-1) at 100 cycles) and enhanced capacity retention.
Extended investigation of electrocatalytic generation of dihydrogen using [(mu-1,2-benzenedithiolato)][Fe(CO)3]2 has revealed that weak acids, such as acetic acid, can be used. The catalytic reduction producing dihydrogen occurs at approximately -2 V for several carboxylic acids and phenols resulting in overpotentials of only -0.44 to -0.71 V depending on the weak acid used. This unusual catalytic reduction occurs at a potential at which the starting material, in the absence of a proton source, does not show a reduction peak. The mechanism for this process and structures for the intermediates have been discerned by electrochemical and computational analysis. These studies reveal that the catalyst is the monoanion of the starting material and an ECEC mechanism occurs.
Voltammetry is widely used for the evaluation of iron-only hydrogenase mimics and other potential catalysts for hydrogen generation using various dipolar aprotic solvents. Effective catalysts show enhanced current in the presence of a proton donor at the potential where the catalyst is reduced. To facilitate the comparison of catalytic efficiencies, this paper provides a simple means of calculating the standard potential for reduction of the acid, HA, according to the half reaction 2HA + 2e- <==> H2 + 2A-. This standard potential depends on the pKa of HA in the solvent being used. It is thermodynamically impossible for reduction of HA to occur at less negative potentials than the standard potential, and the most effective catalysts will operate at potentials as close as possible to the standard potential. In addition, direct reduction of HA at the electrode will compete with the catalyzed reduction, thus complicating evaluation of the rate of the catalyzed reaction. Glassy carbon electrodes, commonly used in such evaluations, show a quite large overpotential for direct reduction of HA so that the necessary corrections are small. However, catalysis at very negative potentials will be contaminated by significant direct reduction of HA at glassy carbon. It is demonstrated that direct reduction can be almost completely suppressed by using a mercury or amalgamated gold electrode, even at very negative potentials.
Polymers for IR imaging: The preparation of high refractive index polymers (n = 1.75 to 1.86) via the inverse vulcanization of elemental sulfur is reported. High quality imaging in the near (1.5 μm) and mid-IR (3-5 μm) regions using high refractive index polymeric lenses from these sulfur materials was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.