The Pathosystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center (https://www.patricbrc.org). Recent changes to PATRIC include a redesign of the web interface and some new services that provide users with a platform that takes them from raw reads to an integrated analysis experience. The redesigned interface allows researchers direct access to tools and data, and the emphasis has changed to user-created genome-groups, with detailed summaries and views of the data that researchers have selected. Perhaps the biggest change has been the enhanced capability for researchers to analyze their private data and compare it to the available public data. Researchers can assemble their raw sequence reads and annotate the contigs using RASTtk. PATRIC also provides services for RNA-Seq, variation, model reconstruction and differential expression analysis, all delivered through an updated private workspace. Private data can be compared by ‘virtual integration’ to any of PATRIC's public data. The number of genomes available for comparison in PATRIC has expanded to over 80 000, with a special emphasis on genomes with antimicrobial resistance data. PATRIC uses this data to improve both subsystem annotation and k-mer classification, and tags new genomes as having signatures that indicate susceptibility or resistance to specific antibiotics.
We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at ~1.38 Gbp is ~5-fold larger in size than the genome of the malaria vector, Anopheles gambiae. Nearly 50% of the Aedes aegypti genome consists of transposable elements. These contribute to a ~4-6 fold increase in average gene length and the size of intergenic regions relative to Anopheles gambiae and Drosophila melanogaster. Nevertheless, chromosomal synteny is generally maintained between all three insects although conservation of orthologous gene order is higher (~2-fold) between the mosquito species than between either of them and fruit fly. Three methods have provided transcriptional evidence for 80% of the 15,419 predicted protein coding genes in Aedes aegypti. An increase in genes encoding odorant binding, cytochrome P450 and cuticle domains relative to Anopheles gambiae suggests that members of these protein families underpin some of the biological differences between them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.