How stem cells are recruited to and maintained in their niches is crucial to understanding their regulation and use in regenerative medicine. Here, we demonstrate that DE-cadherin-mediated cell adhesion is required for anchoring germline stem cells (GSCs) in their niches in the Drosophila ovary. Two major components of this adhesion process, DE-cadherin and Armadillo/beta-catenin, accumulate at high levels in the junctions between GSCs and cap cells, one of the niche components. Removal of these proteins from GSCs results in stem cell loss. Furthermore, DE-cadherin is required for recruiting GSCs to their niche. Our study demonstrates that anchorage of GSCs in their niche by DE-cadherin-mediated adhesion is important for stem cell maintenance and function.
p53 can be isolated from cells in a form that is inert for binding to DNA but that can be stimulated dramatically by phosphorylation, antibody binding, or short single strands of DNA. This suggests that upon genotoxic stress, cells can convert latent p53 to one that is active for DNA binding. Surprisingly, we observed that latent p53 is as effective in activating transcription in vitro as is active p53. We found that HeLa nuclear extracts can stimulate DNA binding by latent p53 and have purified from them a p53-stimulating protein that we have determined to be the product of the Ref.
Shortage of face masks is a current critical concern since the emergence of coronavirus-2 or SARS- . In this work, we compared the melt-blown (MB) filter, which is commonly used for the N95 face mask, with nanofiber (NF) filter, which is gradually used as an effective mask filter, to evaluate their reusability. Extensive characterizations were performed repeatedly to evaluate some performance parameters, which include filtration efficiency, airflow rate, and surface and morphological properties, after two types of cleaning treatments. In the first cleaning type, samples were dipped in 75% ethanol for a predetermined duration. In the second cleaning type, 75% ethanol was sprayed on samples. It was found that filtration efficiency of MB filter was significantly dropped after treatment with ethanol, while the NF filter exhibited consistent high filtration efficiency regardless of cleaning types. In addition, the NF filter showed better cytocompatibility than the MB filter, demonstrating its harmlessness on the human body. Regardless of ethanol treatments, surfaces of both filter types maintained hydrophobicity, which can sufficiently prevent wetting by moisture and saliva splash to prohibit not only pathogen transmission but also bacterial growth inside. On the basis of these comparative evaluations, the wider use of the NF filter for face mask applications is highly recommended, and it can be reused multiple times with robust filtration efficiency. It would be greatly helpful to solve the current shortage issue of face masks and significantly improve safety for front line fighters against coronavirus disease.
Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. Together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.