Poly (ADP-ribose) polymerase (PARP) inhibitors have emerged as promising cancer therapeutics especially for tumors with deficient homologous recombination (HR) repair. However, as HR-deficient tumors represent only a small fraction of endometrial cancers, the therapeutic utility of PARP inhibitors is limited in this disease. Somatic loss of phosphatase and tensin homolog (PTEN), a tumor suppressor that counteracts phosphoinositide 3-kinase (PI3K) activity, is one of the most common genetic aberrations in endometrioid endometrial cancer. While previous works have identified the role of PTEN in DNA double-strand break repair, vulnerabilities of PTEN-deficient endometrioid endometrial cancers to PARP inhibition remain controversial. Here we find that PTEN-deficient endometrioid endometrial cancer cells are not responsive to PARP inhibitor Olaparib alone, but instead show superior sensitivity to compound inhibition with PI3K inhibitor BKM120, as evidenced by reduced clonogenic cell growth and three-dimensional (3D) spheroid disintegration. Mechanistically, PI3K blockade by BKM120 attenuated HR competency with γH2AX accumulation and reduced RAD51 and BRCA1 expression in Ishikawa, AN3CA and Nou-1 cells, but the same combination treatment led to enhanced phosphorylation of DNA-PK, a non-homologous end joining repair protein, in Hec-108 cells. Furthermore, we show that CRISPR/Cas9-mediated PTEN depletion rendered PTEN wild-type Hec-1A endometrioid endometrial cancer cells responsive to combined inhibition of PARP/PI3K, with concomitantly induced DNA damage accumulation and repair defects. The combination of BKM120 and Olaparib cooperated to inhibit tumor growth in a genetic mouse model of Pten-deficient endometrioid endometrial cancer. Together, these results suggest PI3K inhibition may be a plausible approach to expand the utility of PARP inhibitors to endometrioid endometrial cancers in a PTEN-deficient setting.
The PI3K pathway is one of the most dysregulated signaling pathways in epithelial cancers and has become an attractive therapeutic target under active preclinical and clinical development. However, recent clinical trial studies revealed that blockade of PI3K activity in advanced cancer often leads to the development of resistance and relapse of the diseases. Intense efforts have been made to elucidate resistance mechanisms and identify rational drug combinations with PI3K inhibitors in solid tumors. In the current study, we found that PI3K inhibition by GDC-0941 increased macrophage infiltration and induced the expression of macrophage-associated cytokines and chemokines in the mouse 4T1 breast tumor model. Using the in vitro co-culture system, we showed that the presence of macrophages led to the activation of NF-κB signaling in 4T1 tumor cells, rendering tumor cells resistant to PI3K inhibition by GDC-0941. Furthermore, we found that Aspirin could block the activation of NF-κB signaling induced by PI3K inhibition, and combined use of GDC-0941 and Aspirin resulted in attenuated cell growth and enhanced apoptosis of 4T1 cells in the in vitro co-culture system with the presence of macrophages. Consistently, the combination treatment also effectively reduced tumor burden, macrophage infiltration and pulmonary metastasis in in vivo 4T1 breast tumor model. Together, our results suggested macrophages in microenvironment may contribute to the resistance of breast cancer cells to PI3K inhibition and reveal a new combination paradigm to improve the efficacy of PI3K-targeted therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.