Heat shock protein 27 (HSP27) shows attenuated expression in human coronary arteries as the extent of atherosclerosis progresses. In mice, overexpression of HSP27 reduces atherogenesis, yet the precise mechanism (s) are incompletely understood. Inflammation plays a central role in atherogenesis, and of particular interest is the balance of pro-and anti-inflammatory factors produced by macrophages. As nuclear factor-kappa B (NF-κB) is a key immune signaling modulator in atherogenesis, and macrophages are known to secrete HSP27, we sought to determine if recombinant HSP27 (rHSP27) alters NF-κB signaling in macrophages. Treatment of THP-1 macrophages with rHSP27 resulted in the degradation of an inhibitor of NF-κB, IκBα, nuclear translocation of the NF-κB p65 subunit, and increased NF-κB transcriptional activity. Treatment of THP-1 macrophages with rHSP27 yielded increased expression of a variety of genes, including the pro-inflammatory factors, IL-1β, and TNF-α. However, rHSP27 also increased the expression of the anti-inflammatory factors IL-10 and GM-CSF both at the mRNA and protein levels. Our study suggests that in macrophages, activation of NF-κB signaling by rHSP27 is associated with upregulated expression and secretion of key pro-and anti-inflammatory cytokines. Moreover, we surmise that it is the balance in expression of these mediators and antagonists of inflammation, and hence atherogenesis, that yields a favorable net effect of HSP27 on the vessel wall.
Heat shock protein 27 (HSP27) is traditionally viewed as an intracellular chaperone protein with anti-apoptotic properties. However, recent data indicate that a number of heat shock proteins, including HSP27, are also found in the extracellular space where they may signal via membrane receptors to alter gene transcription and cellular function. Therefore, there is increasing interest in better understanding how HSP27 is released from cells, its levels and composition in the extracellular space, and the cognate cell membrane receptors involved in effecting cell signaling. In this paper, the knowledge to date, as well as some emerging paradigms about the extracellular function of HSP27 is presented. Of particular interest is the role of HSP27 in attenuating atherogenesis by modifying lipid uptake and inflammation in the plaque. Moreover, the abundance of HSP27 in serum is an emerging new biomarker for ischemic events. Finally, HSP27 replacement therapy may represent a novel therapeutic opportunity for chronic inflammatory disorders, such as atherosclerosis.
The production of milligram quantities of purified, active, folded membrane protein from heterologous expression systems remains a general challenge due to intrinsically low expression levels, misfolding, and instability. Here we report the overexpression and purification of milligram quantities of functional Saccharomyces cerevisiae G-protein-coupled receptor, Ste2p, from transiently transfected human embryonic kidney 293 EBNA1 cells. Fluorescent microscopy indicates localization of Ste2p-GFP and Fc-Ste2p-GFP fusion receptors to the cell membrane. Up to 2 mg (approximately 10 pmol/million cells) of the Fc-Ste2p-GFP fusion and 1 mg of a Ste2p-Strep-TagII/(His)8-tagged version were purified per liter of culture following protein A-Sepharose and Talon metal affinity chromatography, respectively. Two distinct fluorescent labels, the hydrophobic 7-(diethylamino)-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM) and the more hydrophilic fluorescein-5-maleimide (FM), were individually attached to the C-terminus of the alpha-mating factor ligand by addition of a reactive cysteine residue to produce active fluorescent pheromones. In vitro fluorescent ligand binding assays demonstrated that a high percentage of the recombinant purified receptor is correctly folded and able to bind ligand. KD values of 34 +/- 3 and 300 +/- 20 nM were observed respectively for the CPM- and FM-labeled ligands. These results combined with blue-shifted emission peaks and loss of fluorescent quenching observed for both fluorescent-labeled Cys alpha-factors when bound to receptor support a model in which the C-terminus of the ligand is packed in a hydrophobic pocket at the interface between the transmembrane and extracellular loop domains. Overall, we present an efficient system for recombinant production of milligram quantities of purified Ste2p in a biologically active form with applications to future structure and functional studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.