Doubly uniparental inheritance (DUI) is an exception to the typical maternal inheritance of mitochondrial (mt) DNA in Metazoa, and found only in some bivalves. In species with DUI, there are two highly divergent gender-associated mt genomes: maternal (F) and paternal (M), which transmit independently and show different tissue localization. Solenaia carinatus is an endangered freshwater mussel species exclusive to Poyang Lake basin, China. Anthropogenic events in the watershed greatly threaten the survival of this species. Nevertheless, the taxonomy of S. carinatus based on shell morphology is confusing, and the subfamilial placement of the genus Solenaia remains unclear. In order to clarify the taxonomic status and discuss the phylogenetic implications of family Unionidae, the entire F and M mt genomes of S. carinatus were sequenced and compared with the mt genomes of diverse freshwater mussel species. The complete F and M mt genomes of S. carinatus are 16716 bp and 17102 bp in size, respectively. The F and M mt genomes of S. carinatus diverge by about 40% in nucleotide sequence and 48% in amino acid sequence. Compared to F counterparts, the M genome shows a more compact structure. Different gene arrangements are found in these two gender-associated mt genomes. Among these, the F genome cox2-rrnS gene order is considered to be a genome-level synapomorphy for female lineage of the subfamily Gonideinae. From maternal and paternal mtDNA perspectives, the phylogenetic analyses of Unionoida indicate that S. carinatus belongs to Gonideinae. The F and M clades in freshwater mussels are reciprocal monophyly. The phylogenetic trees advocate the classification of sampled Unionidae species into four subfamilies: Gonideinae, Ambleminae, Anodontinae, and Unioninae, which is supported by the morphological characteristics of glochidia.
The Yangtze River drainage in China is among the most species rich rivers for freshwater mussels (order Unionida) on Earth with at least 68 species known. The freshwater mussels of the Yangtze River face a variety of threats with indications that species are declining in abundance and area of occupancy. This study represents the first analyses of the genetic structure and diversity for the common and widespread freshwater mussel Nodularia douglasiae based on microsatellite DNA genotypes and mitochondrial DNA sequences. Phylogenetic analysis a fragment of the COI mitochondrial gene indicated that N. douglasiae collected from across the middle and lower Yangtze River drainage are monophyletic with N. douglasiae from Japan, Russia, and South Korea. The results of the analysis of both the mtDNA and microsatellite datasets indicated that the seven collection locations of N. douglasiae in the middle and lower Yangtze River drainage showed high genetic diversity, significant genetic differentiation and genetic structure, and stable population dynamics over time. Moreover, we found that the connections among tributaries rivers and lakes in the Yangtze River drainage were important in maintaining gene flow among locations that N. douglasiae inhabits. An understanding of the genetic structure and diversity of a widespread species like N. douglasiae could be used as a surrogate to better understand the populations of other freshwater mussel species that are more rare in the Yangtze River drainage. At the same time, these results could provide a basis for the protection of genetic diversity and management of unionid mussels diversity and other aquatic organisms in the system.
In order to obtain further understanding of genetic structure and evolutionary relationship of Ascaris from humans and pigs, phylogeography study on 12 populations from six endemic regions in China was conducted using mitochondrial DNA markers (cytochrome c oxidase subunit 1 (COX1) and NAD1) and the software programs of DnaSP 5.0, Arlequin 3.0, MEGA 4.0, and NETWORK 4.5.1.6. Results showed that (a) genetic diversity of Ascaris varied with hosts and locations, but no distinct geographical distribution pattern was found, (b) a higher level of genetic diversity and differentiation was found in pig-derived populations in contrast to human-derived ones, and in populations of human-derived Ascaris from the southern regions in comparison to that from the middle and northern locations, but similar geographical difference was not observed within pig-derived populations, (c) historical population expanding was detected from a large part of human-derived Ascaris populations but not in pig-derived Ascaris, (d) a high level of gene flow was detected between human- and pig-derived Ascaris and also among human-derived populations, and (e) network analysis from haplotype of COX1 indicated an ancestral haplotype from human-derived Ascaris. In conclusion, the present study revealed new information on Ascaris on the aspects of genetic diversity, population differentiation and historical demographic patterns, gene flow, phylogenesis reconstruction, and haplotype network, discussed the results with historical demographic migration of humans and domestication of wild boar in China, and raised a different assumption about the evolutionary relationship of the two roundworms. This study should have certain enlightenment for the epidemiology and the evolutionary and taxonomy relationship of Ascaris from humans and pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.