This paper introduces a video dataset of spatiotemporally localized Atomic Visual Actions (AVA). The AVA dataset densely annotates 80 atomic visual actions in 430 15-minute video clips, where actions are localized in space and time, resulting in 1.58M action labels with multiple labels per person occurring frequently. The key characteristics of our dataset are: (1) the definition of atomic visual actions, rather than composite actions;(2) precise spatio-temporal annotations with possibly multiple annotations for each person; (3) exhaustive annotation of these atomic actions over 15-minute video clips; (4) people temporally linked across consecutive segments; and (5) using movies to gather a varied set of action representations. This departs from existing datasets for spatio-temporal action recognition, which typically provide sparse annotations for composite actions in short video clips.AVA, with its realistic scene and action complexity, exposes the intrinsic difficulty of action recognition. To benchmark this, we present a novel approach for action localization that builds upon the current state-of-the-art methods, and demonstrates better performance on JHMDB and UCF101-24 categories. While setting a new state of the art on existing datasets, the overall results on AVA are low at 15.6% mAP, underscoring the need for developing new approaches for video understanding.
We address the problem of segmenting and recognizing objects in real world images, focusing on challenging articulated categories such as humans and other animals. For this purpose, we propose a novel design for region-based object detectors that integrates efficiently top-down information from scanning-windows part models and global appearance cues. Our detectors produce class-specific scores for bottom-up regions, and then aggregate the votes of multiple overlapping candidates through pixel classification. We evaluate our approach on the PASCAL segmentation challenge, and report competitive performance with respect to current leading techniques. On VOC2010, our method obtains the best results in 6/20 categories and the highest performance on articulated objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.