Up-converting rare-earth nanophosphors (UCNPs) have great potential to revolutionize biological luminescent labels, but their use has been limited by difficulties in obtaining UCNPs that are biocompatible. To address this problem, we have developed a simple and versatile strategy for converting hydrophobic UCNPs into water-soluble and carboxylic acid-functionalized analogues by directly oxidizing oleic acid ligands with the Lemieux-von Rudloff reagent. This oxidation process has no obvious adverse effects on the morphologies, phases, compositions and luminescent capabilities of UCNPs. Furthermore, as revealed by Fourier transform infrared (FTIR) and NMR results, oleic acid ligands on the surface of UCNPs can be oxidized into azelaic acids (HOOC(CH2)7COOH), which results in the generation of free carboxylic acid groups on the surface. The presence of free carboxylic acid groups not only confers high solubility in water, but also allows further conjugation with biomolecules such as streptavidin. A highly sensitive DNA sensor based on such streptavidin-coupled UCNPs have been prepared, and the demonstrated results suggest that these biocompatible UCNPs have great superiority as luminescent labeling materials for biological applications.
Hybrid organic–inorganic halide‐perovskite‐based solar cells have achieved notable progress. A hot topic in this field is exploring inexpensive, stable and effective hole‐transporting materials (HTMs) in order to improve the device performance and be favorable for large‐scale production in the future. The HTMs have been proven to be an important component of perovskite solar cells, which can form selective contact being favorable for reducing charge recombination and effective hole collection, thus resulting in the enhancement of the open‐circuit voltage and the fill factor. Here, an overview of the design and development of HTMs is given, mainly divided into conductive polymers, inorganic p‐type semiconductors in inverted‐structure‐based planar perovskite solar cells. The influences of their mobility, work function and film property on device performance are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.