Abstract:The semantic segmentation of remote sensing images faces two major challenges: high inter-class similarity and interference from ubiquitous shadows. In order to address these issues, we develop a novel edge loss reinforced semantic segmentation network (ERN) that leverages the spatial boundary context to reduce the semantic ambiguity. The main contributions of this paper are as follows: (1) we propose a novel end-to-end semantic segmentation network for remote sensing, which involves multiple weighted edge supervisions to retain spatial boundary information; (2) the main representations of the network are shared between the edge loss reinforced structures and semantic segmentation, which means that the ERN simultaneously achieves semantic segmentation and edge detection without significantly increasing the model complexity; and (3) we explore and discuss different ERN schemes to guide the design of future networks. Extensive experimental results on two remote sensing datasets demonstrate the effectiveness of our approach both in quantitative and qualitative evaluation. Specifically, the semantic segmentation performance in shadow-affected regions is significantly improved.
BackgroundQuantitative areas is of great measurement of wound significance in clinical trials, wound pathological analysis, and daily patient care. 2D methods cannot solve the problems caused by human body curvatures and different camera shooting angles. Our objective is to simply collect wound areas, accurately measure wound areas and overcome the shortcomings of 2D methods.ResultsWe propose a method with 3D transformation to measure wound area on a human body surface, which combines structure from motion (SFM), least squares conformal mapping (LSCM), and image segmentation. The method captures 2D images of wound, which is surrounded by adhesive tape scale next to it, by smartphone and implements 3D reconstruction from the images based on SFM. Then it uses LSCM to unwrap the UV map of the 3D model. In the end, it utilizes image segmentation by interactive method for wound extraction and measurement. Our system yields state-of-the-art results on a dataset of 118 wounds on 54 patients, and performs with an accuracy of 0.97. The Pearson correlation, standardized regression coefficient and adjusted R square of our method are 0.999, 0.895 and 0.998 respectively.ConclusionsA smartphone is used to capture wound images, which lowers costs, lessens dependence on hardware, and avoids the risk of infection. The quantitative calculation of the 3D wound area is realized, solving the challenges that 2D methods cannot and achieving a good accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.