BackgroundN6-methyladenosine (m6A) is an important epitranscriptomic mark with high abundance in the brain. Recently, it has been found to be involved in the regulation of memory formation and mammalian cortical neurogenesis. However, while it is now established that m6A methylation occurs in a spatially restricted manner, its functions in specific brain regions still await elucidation.ResultsWe identify widespread and dynamic RNA m6A methylation in the developing mouse cerebellum and further uncover distinct features of continuous and temporal-specific m6A methylation across the four postnatal developmental processes. Temporal-specific m6A peaks from P7 to P60 exhibit remarkable changes in their distribution patterns along the mRNA transcripts. We also show spatiotemporal-specific expression of m6A writers METTL3, METTL14, and WTAP and erasers ALKBH5 and FTO in the mouse cerebellum. Ectopic expression of METTL3 mediated by lentivirus infection leads to disorganized structure of both Purkinje and glial cells. In addition, under hypobaric hypoxia exposure, Alkbh5-deletion causes abnormal cell proliferation and differentiation in the cerebellum through disturbing the balance of RNA m6A methylation in different cell fate determination genes. Notably, nuclear export of the hypermethylated RNAs is enhanced in the cerebellum of Alkbh5-deficient mice exposed to hypobaric hypoxia.ConclusionsTogether, our findings provide strong evidence that RNA m6A methylation is controlled in a precise spatiotemporal manner and participates in the regulation of postnatal development of the mouse cerebellum.Electronic supplementary materialThe online version of this article (10.1186/s13059-018-1435-z) contains supplementary material, which is available to authorized users.
N6-methyladenosine (m6A) is the most abundant epitranscriptomic mark found on mRNA and has important roles in various physiological processes. Despite the relatively high m6A levels in the brain, its potential functions in the brain remain largely unexplored. We performed a transcriptome-wide methylation analysis using the mouse brain to depict its region-specific methylation profile. RNA methylation levels in mouse cerebellum are generally higher than those in the cerebral cortex. Heterogeneity of RNA methylation exists across different brain regions and different types of neural cells including the mRNAs to be methylated, their methylation levels and methylation site selection. Common and region-specific methylation have different preferences for methylation site selection and thereby different impacts on their biological functions. In addition, high methylation levels of fragile X mental retardation protein (FMRP) target mRNAs suggest that m6A methylation is likely to be used for selective recognition of target mRNAs by FMRP in the synapse. Overall, we provide a region-specific map of RNA m6A methylation and characterize the distinct features of specific and common methylation in mouse cerebellum and cerebral cortex. Our results imply that RNA m6A methylation is a newly identified element in the region-specific gene regulatory network in the mouse brain.
Clear cell renal cell carcinoma (ccRCC) has been associated with one of the highest mortality rates among all cancers. Fatty acid binding proteins (FABPs) are 14-15 kDa proteins that are highly abundant in the cytosol of most tissues. FABP5, a member of the FABP family, has been observed to promote tumor cell growth in numerous cancer types. In order to investigate the function of FABP5 in ccRCC cells in the present study, RNA sequencing data from The Cancer Genome Atlas were analyzed to determine the expression levels of FABP5 in ccRCC patient samples. Survival and Cox regression analyses were performed to measure the association between FABP5 expression and clinicopathological features of patients with ccRCC. Subsequent in vitro experiments downregulated or overexpressed FABP5 in Caki-1 and 786O ccRCC cells using lentiviral vectors to evaluate cell proliferation ability, and a xenograft transplantation model was established to examine the effect of FABP5 on tumorigenesis in vivo. The results demonstrated that FABP5 expression was significantly upregulated in samples from patients with ccRCC when compared with normal tissue samples. High FABP5 expression was also significantly correlated with tumor and metastasis classifications and predicted poor survival in patients with ccRCC. In ccRCC cells, silencing of FABP5 significantly inhibited cell proliferation, while overexpression of FABP5 promoted cell proliferation when compared to the respective controls. In addition, treatment with the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT inhibitor, LY294002, attenuated the pro-proliferative effects of exogenous FABP5 expression in Caki-1 and 786O cells. This indicated that the PI3K/AKT signaling pathway may be partially involved in the FABP5-mediated increase in ccRCC cell proliferation. Furthermore, FABP5 was observed to regulate tumor growth in nude mice in vivo. In conclusion, the results of the present study suggest that FABP5 may exert a pro-proliferative role in ccRCC and may be associated with malignant progression and tumorigenesis.
Endozoochorous dispersal of seeds by livestock has long attracted the attention of grassland scientists. However, little is known about seed dispersal after ingestion by Kazakh sheep on dry grasslands in the Tianshan Mountains. The objective of this experiment was to learn more about the recovery and germinability of seeds from 17 plant species after either actual or simulated ingestion (i.e. insertion through a rumen fistula) by Kazakh sheep. The passage time of seeds through the sheep gut ranged from 12 to 96 h. More than 80% of all recovered seeds were defecated 24-48 h after ingestion. The mean retention time of seeds in the gut ranged from 27.3 to 42.2 h. Seed recovery percentage ranged between 12.6 and 17.6% for leguminous species and between 0.8 and 3.2% for gramineous species. Seed recovery percentage was positively correlated with seed mass, but negatively correlated with seed shape. The germination percentages of the gramineous species were greater in the non-ingested treatment (66-98%) than in the simulated ingestion treatment (3-10%). In contrast, for leguminous species, seed germination percentages were greater in the simulated ingestion treatment (23-70%) than in the non-ingested one (5-12%). Seed germination percentage after simulated ingestion was positively correlated with seed mass, but negatively correlated with seed shape. In conclusion, leguminous seeds were more likely than gramineous ones to pass through the gut of Kazakh sheep and then germinate. Free-ranging Kazakh sheep can contribute to the spread of plant species, especially leguminous species, in the Tianshan Mountains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.