BackgroundThe Moso bamboo (Phyllostachys edulis) is one of the most important forestry resources and plays essential ecological roles in southern China. A draft nuclear genome sequence is expected to be publicly available in the near future; an explosion of gene expression data related to the unique traits of Moso bamboo will undoubtedly follow. Reverse transcription quantitative real-time PCR ((RT-)qPCR) is a widely used method for gene expression analysis. A necessary prerequisite of exact and reliable data is the accurate choice of reference genes.ResultIn this study, 14 candidate reference genes were chosen, and their expression levels were assessed by (RT-)qPCR in a set of six tissue samples (root, stem, mature stem, leaf, flower, and leaf sheath) and at two developmental stages (before and after flowering) in bamboo specimens obtained in three locations. The stability and suitability of the candidate reference genes were validated using the geNorm, NormFinder and BestKeeper programs. The results showed that TIP41 and NTB were suitable reference genes across all the tissues and at the different developmental stages examined in this study. While the expression of the NTB, TIP41 and UBQ were the mostly stable in different plant tissues samples, the expression of the TIP41, NTB and CAC were ranked the most stable in bamboo plants at various developmental stages. AP2-like gene was further assessed by using the reference genes TIP41 and NTB in comparison to ACT. Significant difference of the expression profile of AP2-like demonstrated the importance of choosing adequate reference genes in bamboo.Conclusion TIP41 and NTB were found to be homogeneously expressed and were adequate for normalization purposes, showing equivalent transcript levels in different samples. They are therefore the recommended reference genes for measuring gene expression in P. edulis.
The sucrose non-fermentation-related protein kinase (SnRK) is a kind of Ser/Thr protein kinase, which plays a crucial role in plant stress response by phosphorylating the target protein to regulate the interconnection of various signaling pathways. However, little is known about the SnRK family in Eucalyptus grandis. Thirty-four putative SnRK sequences were identified in E. grandis and divided into three subgroups (SnRK1, SnRK2 and SnRK3) based on phylogenetic analysis and the type of domain. Chromosome localization showed that SnRK family members are unevenly distributed in the remaining 10 chromosomes, with the notable exception of chromosome 11. Gene structure analysis reveal that 10 of the 24 SnRK3 genes contained no introns. Moreover, conserved motif analyses showed that SnRK sequences belonged to the same subgroup that contained the same motif type of motif. The Ka/Ks ratio of 17 paralogues suggested that the EgrSnRK gene family underwent a purifying selection. The upstream region of EgrSnRK genes enriched with different type and numbers of cis-elements indicated that EgrSnRK genes are likely to play a role in the response to diverse stresses. Quantitative real-time PCR showed that the majority of the SnRK genes were induced by salt treatment. Genome-wide analyses and expression pattern analyses provided further understanding on the function of the SnRK family in the stress response to different environmental salt concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.