Anomaly object detection is the core technology in the application for X‐ray images. However, the accuracy of current X‐ray anomaly object detection method still needs to be improved. In this paper, an effective anomaly object detection network is proposed to improve the detection accuracy of anomaly object for X‐ray images. Firstly, learnable Gabor convolution layer, deformable convolution, and spatial attention mechanism are introduced to enhance the representative ability of features in ResNeXt. Then, dense local regression is applied to predict the offset of multiple dense boxes in region proposal to locate the object accurately. At last, bigger discriminative RoI pooling is proposed to classify the candidate boxes to improve the accuracy of object classification. Experimental results on the SIXray and OPIXray datasets show that compared with the state‐of‐the‐art methods, the proposed EAOD‐Net can achieve the competitive detection performance.
Objects in aerial images often have arbitrary orientations and variable shapes and sizes. As a result, accurate and robust object detection in aerial images is a challenging problem. In this paper, an arbitrary-oriented object detection method for aerial images, based on Dynamic Deformable Convolution (DDC) and Self-normalizing Channel Attention Mechanism (SCAM), is proposed; this method uses ReResNet-50 as the backbone network to extract rotation-equivariant features. First, DDC is proposed as a replacement for the conventional convolution operation in the Convolutional Neural Network (CNN) in order to cope with various shapes, sizes and arbitrary orientations of the objects. Second, SCAM embedded into the high layer of ReResNet-50, which allows the network to enhance the important feature channels and suppress the irrelevant ones. Finally, Rotation Regions of Interest (RRoI) are generated based on a Region Proposal Network (RPN) and a RoI Transformer (RT), and the RoI-wise classification and bounding box regression are realized by Rotation-invariant RoI Align (RiRoI Align). The proposed method is comprehensively evaluated on three publicly available benchmark datasets. The mean Average Precision (mAP) can reach 80.91%, 92.73% and 94.1% on DOTA-v1.0, DOTA-v1.5 and HRSC2016 datasets, respectively. The experimental results show that, when compared with the state-of-the-arts methods, the proposed method can achieve superior detection accuracy.
Due to the variety and complexity of objects in X-ray images, how to detect the prohibited items automatically and accurately is a challenging problem. In this paper, an X-ray image prohibited object detection method based on Dynamic Deformable Convolution (DyDC) and adaptive Intersection over Union (IoU) is proposed based on Cascade R-CNN framework. The main contributions are as follows. First, DyDC is proposed to cope with the diversity of the prohibited objects in X-ray images and to improve the feature representation capability. Then, adaptive IoU mechanism is proposed, which can dynamically adjust the IoU threshold during the training process to generate high quality proposals. The proposed method is extensively evaluated on two publicly available benchmark datasets, namely SIXray and OPIXray, and the experimental results show that it can achieve the state-of-the-art detection accuracy, compared with other existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.