Spiral bevel gear is widely used in the automotive and aerospace manufacturing industries, and the machining process is complex and the material is difficult to cut. The characteristics of high hardness, strong chemical reactivity and poor heat dissipation make the machinability of 20CrMnTi poor for face-hobbing machining of spiral bevel gear. In the process of cutting, there are some problems such as severe tool wear, poor machining quality and low machining efficiency caused by higher cutting force and higher cutting temperature. Therefore, it is necessary to study and analyze the wear experiment of the cutting tools of spiral bevel gear for face-hobbing deeply. Firstly, under the single factor experimental conditions, the wear patterns of inside blade and outside blade are observed and analyzed at different rotational speeds, and the tool wear conditions are detected and measured analysis. Secondly, the tool wear morphology and element distribution of rake face and flank face of inside blade and outside blade are analyzed by scanning electron microscope and energy spectrometer, and the tool wear mechanism for face-hobbing of spiral bevel gear is discussed in depth. The results demonstrate that chipping and fracture are the main patterns of tool wear; the tool wear mechanism are mainly embodied in adhesive wear, diffusion wear and oxidation wear. The tool wear is mainly distributed on the main cutting edge, top edge and corner radius, and the top edge and corner radius are more seriously worn. The research results can provide an effective basis for exploring the tool wear mechanism and improving the tool life, and provide technical support for the design and development of gear machining tools.
High temperature and strain will occur in the cutting area during dry milling of contour bevel gears, which causes plastic deformation of the workpiece, resulting in changes in the physical properties of the machined surface’s metamorphic layer, reducing the quality of the workpiece’s machined surface. Therefore, it is necessary to investigate the properties of the metamorphic layer and the work hardening behavior of the machined surfaces of contour bevel gears. The paper first establishes a single-tooth finite element simulation model for a contour bevel gear and extracts the temperature field, strain field and strain rate at different depths from the machined surface. Then, based on the simulation results, the experiment of milling contour bevel gears is carried out, the microscopic properties of the machined metamorphic layer are studied using XRD diffractometer and ultra-deep field microscopy, and the work hardening behavior of the machined metamorphic layer under different cutting parameters is studied. Finally, the influence of the cutting parameters on the thickness of the metamorphic layer of the machined surface is investigated by scanning electron microscopy. The research results can not only improve the surface quality and machinability of the workpiece, but are also significant for increasing the fatigue strength of the workpiece.
Contour bevel gears have the advantages of high coincidence, low noise and large bearing capacity, which are widely used in automobile manufacturing, shipbuilding and construction machinery. However, when the surface quality is poor, the effective contact area between the gear mating surfaces decreases, affecting the stability of the fit and thus the transmission accuracy, so it is of great significance to optimize the surface quality of the contour bevel gear. This paper firstly analyzes the formation process of machined surface roughness of contour bevel gears on the basis of generating machining method, and dry milling experiments of contour bevel gears are conducted to analyze the effects of cutting speed and feed rate on the machined surface roughness and surface topography of the workpiece. Then, the surface defects on the machined surface of the workpiece are studied by SEM, and the causes of the surface defects are analyzed by EDS. After that, XRD is used to compare the microscopic grains of the machined surface and the substrate material for diffraction peak analysis, and the effect of cutting parameters on the microhardness of the workpiece machined surface is investigated by work hardening experiment. The research results are of great significance for improving the machining accuracy of contour bevel gears, reducing friction losses and improving transmission efficiency.
Contour bevel gears have the advantages of high coincidence, low noise and large bearing capacity, which are widely used in automobile manufacturing, shipbuilding and construction machinery. However, the quality of the tooth surface has a significant impact on the transmission accuracy of the gear, so it is of great significance to optimize the surface quality of the contour bevel gear. This paper firstly analyzes the formation process of machined surface roughness of contour bevel gears on the basis of generating machining method, and dry milling experiments of contour bevel gears are conducted to analyze the effects of cutting speed and feed rate on the machined surface roughness and surface topography of the workpiece. Then, the surface defects on the machined surface of the workpiece are studied by SEM, and the causes of the surface defects are analyzed by EDS. After that, XRD is used to compare the microscopic grains of the machined surface and the substrate material for diffraction peak analysis, and the effect of cutting parameters on the microhardness of the workpiece machined surface is investigated by work hardening experiment. The research results are of great significant for improving the machining accuracy of contour bevel gears, reducing friction losses and improving transmission efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.