Antagonism between heavy metal and
selenium (Se) could significantly
affect their biotoxicity, but little is known about the mechanisms
underlying such microbial-mediated antagonistic processes as well
as the formed products. In this work, we examined the cadmium (Cd)–Se
interactions and their fates in Caenorhabditis elegans through in vivo and in vitro analysis and elucidated the machinery
of Se-stimulated Cd detoxification. Although the Se introduction induced
up to 3-fold higher bioaccumulation of Cd in C. elegans than the Cd-only group, the nematode viability remained at a similar
level to the Cd-only group. The relatively lower level of reactive
oxygen species in the Se & Cd group confirms a significantly enhanced
Cd detoxification by Se. The Cd–Se interaction, mediated by
multiple thiols, including glutathione and phytochelatin, resulted
in the formation of less toxic cadmium selenide (CdSe)/cadmium sulfide
(CdS) nanoparticles. The CdSe/CdS nanoparticles were mainly distributed
in the pharynx and intestine of the nematodes, and continuously excreted
from the body, which also benefitted the C. elegans survival. Our findings shed new light on the microbial-mediated
Cd–Se interactions and may facilitate an improved understanding
and control of Cd biotoxicity in complicated coexposure environments.
Long-distance extracellular electron transfer has been observed in Gram-negative bacteria and plays roles in both natural and engineering processes. The electron transfer can be mediated by conductive protein appendages (in short unicellular bacteria such as Geobacter species) or by conductive cell envelopes (in filamentous multicellular cable bacteria). Here we show that Lysinibacillus varians GY32, a filamentous unicellular Gram-positive bacterium, is capable of bidirectional extracellular electron transfer. In microbial fuel cells, L. varians can form centimetre-range conductive cellular networks and, when grown on graphite electrodes, the cells can reach a remarkable length of 1.08 mm. Atomic force microscopy and microelectrode analyses suggest that the conductivity is linked to pili-like protein appendages. Our results show that long-distance electron transfer is not limited to Gram-negative bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.